Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Ureide catabolism in Arabidopsis thaliana and Escherichia coli

Abstract

The availability of whole genome sequences boosts the identification of biochemical pathways conserved across species using tools of comparative genomics. A cross-organism protein association analysis allowed us to identify two enzymes, ureidoglycine aminohydrolase and ureidoglycolate amidohydrolase, that catalyze the final reactions of purine degradation in the model plant Arabidopsis thaliana. A similar pathway was found in Escherichia coli, while an alternative metabolic route via ureidoglycine transaminase can be predicted for other organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enzymatic conversions of ureidoglycolate and allantoate.
Figure 2: 13C NMR of the complete enzymatic conversion of racemic allantoin-5-13C; 1-15N.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Chou, H.C. et al. Infect. Immun. 72, 3783–3792 (2004).

    Article  CAS  Google Scholar 

  2. Todd, C.D. et al. J. Exp. Bot. 57, 5–12 (2006).

    Article  CAS  Google Scholar 

  3. Vogels, G.D. & Van der Drift, C. Bacteriol. Rev. 40, 403–468 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Werner, A.K., Sparkes, I.A., Romeis, T. & Witte, C.P. Plant Physiol. 146, 418–430 (2008).

    Article  CAS  Google Scholar 

  5. Cusa, E., Obradors, N., Baldoma, L., Badia, J. & Aguilar, J. J. Bacteriol. 181, 7479–7484 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Schultz, A.C., Nygaard, P. & Saxild, H.H. J. Bacteriol. 183, 3293–3302 (2001).

    Article  CAS  Google Scholar 

  7. van der Drift, C., de Windt, F.E. & Vogels, G.D. Arch. Biochem. Biophys. 136, 273–279 (1970).

    Article  CAS  Google Scholar 

  8. Gravenmade, E.J., Vogels, G.D. & van der Drift, C. Biochim. Biophys. Acta 198, 569–582 (1970).

    Article  CAS  Google Scholar 

  9. Munoz, A., Piedras, P., Aguilar, M. & Pineda, M. Plant Physiol. 125, 828–834 (2001).

    Article  CAS  Google Scholar 

  10. Winkler, R.G., Blevins, D.G. & Randall, D.D. Plant Physiol. 86, 1084–1088 (1988).

    Article  CAS  Google Scholar 

  11. Höglund, A., Dönnes, P., Blum, T., Adolph, H.W. & Kohlbacher, O. Bioinformatics 22, 1158–1165 (2006).

    Article  Google Scholar 

  12. Scheible, W.R. et al. Plant Physiol. 136, 2483–2499 (2004).

    Article  CAS  Google Scholar 

  13. Schmid, M. et al. Nat. Genet. 37, 501–506 (2005).

    Article  CAS  Google Scholar 

  14. von Mering, C. et al. Nucleic Acids Res. 35, D358–D362 (2007).

    Article  CAS  Google Scholar 

  15. Agarwal, R., Burley, S.K. & Swaminathan, S. J. Mol. Biol. 368, 450–463 (2007).

    Article  CAS  Google Scholar 

  16. van der Drift, C., Van Helvoord, P.E.M. & Vogels, G.D Arch. Biochem. Biophys. 145, 465–469 (1971).

    Article  CAS  Google Scholar 

  17. Ramazzina, I., Folli, C., Secchi, A., Berni, R. & Percudani, R. Nat. Chem. Biol. 2, 144–148 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank F.-Q. Cao for technical support and A. Schäfer from the Institute for Chemistry of the Freie Universität Berlin for NMR measurements. This work was financially supported by the Deutsche Forschungsgemeinschaft (WI 3411/1-1).

Author information

Authors and Affiliations

Authors

Contributions

A.K.W., experimental design and biochemical experiments; T.R., supply of the laboratory environment; C.-P.W., project planning and design and bioinformatic analysis.

Corresponding author

Correspondence to Claus-Peter Witte.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Methods (PDF 2917 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werner, A., Romeis, T. & Witte, CP. Ureide catabolism in Arabidopsis thaliana and Escherichia coli. Nat Chem Biol 6, 19–21 (2010). https://doi.org/10.1038/nchembio.265

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.265

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing