Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

How many human proteoforms are there?

Abstract

Despite decades of accumulated knowledge about proteins and their post-translational modifications (PTMs), numerous questions remain regarding their molecular composition and biological function. One of the most fundamental queries is the extent to which the combinations of DNA-, RNA- and PTM-level variations explode the complexity of the human proteome. Here, we outline what we know from current databases and measurement strategies including mass spectrometry–based proteomics. In doing so, we examine prevailing notions about the number of modifications displayed on human proteins and how they combine to generate the protein diversity underlying health and disease. We frame central issues regarding determination of protein-level variation and PTMs, including some paradoxes present in the field today. We use this framework to assess existing data and to ask the question, “How many distinct primary structures of proteins (proteoforms) are created from the 20,300 human genes?” We also explore prospects for improving measurements to better regularize protein-level biology and efficiently associate PTMs to function and phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two parsings of post-translational modifications from the SwissProt database of 20,245 human proteins.
Figure 2: Graphical depiction of sources of protein variation that combine to make up proteoforms, each of which map back to a single human gene.
Figure 3: Contrasting the potential sources of protein variability versus those that actually occur in combination as proteoforms detectable in actual human systems.
Figure 4: Levels of organization in the human body.
Figure 5: Proteoforms and their families underlie complex traits and molecular mechanisms operative in living systems.

Similar content being viewed by others

References

  1. Gaudet, P. et al. The neXtProt knowledgebase on human proteins: 2017 update. Nucleic Acids Res. 45, D177–D182 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Aken, B.L. et al. Ensembl 2017. Nucleic Acids Res. 45, D635–D642 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169 (2017). This manuscript introduces UniProt, a centralized, authoritative resource for protein sequences.

  5. Duek, P., Bairoch, A., Gateau, A., Vandenbrouck, Y. & Lane, L. Missing protein landscape of human chromosomes 2 and 14: progress and current status. J. Proteome Res. 15, 3971–3978 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Paik, Y.K. et al. The chromosome-centric human proteome project for cataloging proteins encoded in the genome. Nat. Biotechnol. 30, 221–223 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Hood, L., Kronenberg, M. & Hunkapiller, T. T cell antigen receptors and the immunoglobulin supergene family. Cell 40, 225–229 (1985).

    Article  CAS  PubMed  Google Scholar 

  8. Glanville, J. et al. Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire. Proc. Natl. Acad. Sci. USA 106, 20216–20221 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smith, L.M., Kelleher, N.L. & The Consortium for Top Down Proteomics. Proteoform: a single term describing protein complexity. Nat. Methods 10, 186–187 (2013). This manuscript introduces and defines the term “Proteoform.” The proteomics community has adopted this term, which regularizes the description of whole-protein molecules.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, Y.I. et al. RNA splicing is a primary link between genetic variation and disease. Science 352, 600–604 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, E.T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang, X. et al. Widespread expansion of protein interaction capabilities by alternative splicing. Cell 164, 805–817 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Calvo S.E. & Mootha V.K. The mitochondrial proteome and human disease. Annu. Rev. Genomics. Hum. Genet. 11, 25–44 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Picardi, E., D'Erchia, A.M., Lo Giudice, C. & Pesole, G. REDIportal: a comprehensive database of A-to-I RNA editing events in humans. Nucleic Acids Res. 45, D750–D757 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Ruggles, K.V. et al. An analysis of the sensitivity of proteogenomic mapping of somatic mutations and novel splicing events in cancer. Mol. Cell. Proteomics 15, 1060–1071 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Gholami, A.M. et al. Global proteome analysis of the NCI-60 cell line panel. Cell Reports 4, 609–620 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, X. et al. proBAMsuite, a bioinformatics framework for genome-based representation and analysis of proteomics data. Mol. Cell. Proteomics 15, 1164–1175 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Saghatelian, A. & Couso, J.P. Discovery and characterization of smORF-encoded bioactive polypeptides. Nat. Chem. Biol. 11, 909–916 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Arnoult, N. et al. Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN. Nature 549, 548–552 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Loftfield, R.B. & Vanderjagt, D. The frequency of errors in protein biosynthesis. Biochem. J. 128, 1353–1356 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu, X.C. et al. Identification of codon-specific serine to asparagine mistranslation in recombinant monoclonal antibodies by high-resolution mass spectrometry. Anal. Chem. 81, 9282–9290 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001). This manuscript describes the 'histone code', a complex set of PTMs that govern gene transcription.

    Article  CAS  PubMed  Google Scholar 

  23. Toll, H. et al. Glycosylation patterns of human chorionic gonadotropin revealed by liquid chromatography-mass spectrometry and bioinformatics. Electrophoresis 27, 2734–2746 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Wohlschlager, T. et al. Native mass spectrometry for the revelation of highly complex glycosylation in protein therapeutics. in Proteomic Forum 2017 (Deutsche Gesellschaft für Proteomforschung e.V., Potsdam, Germany, 2017).

    Google Scholar 

  25. Yang, Y. et al. Hybrid mass spectrometry approaches in glycoprotein analysis and their usage in scoring biosimilarity. Nat. Commun. 7, 13397 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mukhopadhyay, D. & Riezman, H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315, 201–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Dang, X. et al. The first pilot project of the consortium for top-down proteomics: a status report. Proteomics 14, 1130–1140 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Beck, M. et al. The quantitative proteome of a human cell line. Mol. Syst. Biol. 7, 549 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ponomarenko, E.A. et al. The size of the human proteome: the width and depth. Int. J. Anal. Chem. 2016, 7436849 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ewing, B. & Green, P. Analysis of expressed sequence tags indicates 35,000 human genes. Nat. Genet. 25, 232–234 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Skinner, O.S. et al. Top-down characterization of endogenous protein complexes with native proteomics. Nat. Chem. Biol. 14, 36–41 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Rissin, D.M. et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 28, 595–599 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nesvizhskii, A.I. & Aebersold, R. Interpretation of shotgun proteomic data: the protein inference problem. Mol. Cell. Proteomics 4, 1419–1440 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Chen, B., Brown, K.A., Lin, Z. & Ge, Y. Top-down proteomics: ready for prime time? Anal. Chem. 90, 110–127 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Toby, T.K., Fornelli, L. & Kelleher, N.L. Progress in top-down proteomics and the analysis of proteoforms. Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 9, 499–519 (2016).

    Article  CAS  Google Scholar 

  36. Aichler, M. & Walch, A. MALDI Imaging mass spectrometry: current frontiers and perspectives in pathology research and practice. Lab. Invest. 95, 422–431 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Schey, K.L., Grey, A.C. & Nicklay, J.J. Mass spectrometry of membrane proteins: a focus on aquaporins. Biochemistry 52, 3807–3817 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Dilillo, M. et al. Ultra-high mass resolution MALDI imaging mass spectrometry of proteins and metabolites in a mouse model of glioblastoma. Sci. Rep. 7, 603 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kwiatkowski, M. et al. Homogenization of tissues via picosecond-infrared laser (PIRL) ablation: Giving a closer view on the in-vivo composition of protein species as compared to mechanical homogenization. J. Proteomics 134, 193–202 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim, M.S. et al. A draft map of the human proteome. Nature 509, 575–581 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wilhelm, M. et al. Mass-spectrometry-based draft of the human proteome. Nature 509, 582–587 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Rozenblatt-Rosen, O., Stubbington, M.J.T., Regev, A. & Teichmann, S.A. The Human Cell Atlas: from vision to reality. Nature 550, 451–453 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Kelleher, N.L. A cell-based approach to the human proteome project. J. Am. Soc. Mass Spectrom. 23, 1617–1624 (2012). This manuscript framed a project to define the human proteome by mapping the composition of 1 billion proteoforms within all the different types of human cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Savaryn, J.P., Catherman, A.D., Thomas, P.M., Abecassis, M.M. & Kelleher, N.L. The emergence of top-down proteomics in clinical research. Genome Med. 5, 53 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Benayoun, B.A. & Veitia, R.A. A post-translational modification code for transcription factors: sorting through a sea of signals. Trends Cell Biol. 19, 189–197 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Dang, X. et al. Label-free relative quantitation of isobaric and isomeric human histone H2A and H2B variants by fourier transform ion cyclotron resonance top-down MS/MS. J. Proteome Res. 15, 3196–3203 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Murray-Zmijewski, F., Slee, E.A. & Lu, X. A complex barcode underlies the heterogeneous response of p53 to stress. Nat. Rev. Mol. Cell Biol. 9, 702–712 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Turner, B.M. Cellular memory and the histone code. Cell 111, 285–291 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Verhey, K.J. & Gaertig, J. The tubulin code. Cell Cycle 6, 2152–2160 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Sidoli, S., Lin, S., Karch, K.R. & Garcia, B.A. Bottom-up and middle-down proteomics have comparable accuracies in defining histone post-translational modification relative abundance and stoichiometry. Anal. Chem. 87, 3129–3133 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zheng, Y. et al. Unabridged analysis of human histone H3 by differential top-down mass spectrometry reveals hypermethylated proteoforms from MMSET/NSD2 overexpression. Mol. Cell. Proteomics 15, 776–790 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Piunti, A. et al. Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat. Med. 23, 493–500 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Connors, L.H. et al. Heterogeneity in primary structure, post-translational modifications, and germline gene usage of nine full-length amyloidogenic kappa1 immunoglobulin light chains. Biochemistry 46, 14259–14271 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Klimtchuk, E.S., Prokaeva, T.B., Spencer, B.H., Gursky, O. & Connors, L.H. In vitro co-expression of human amyloidogenic immunoglobulin light and heavy chain proteins: a relevant cell-based model of AL amyloidosis. Amyloid 24, 115–122 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lim, A. et al. Characterization of transthyretin variants in familial transthyretin amyloidosis by mass spectrometric peptide mapping and DNA sequence analysis. Anal. Chem. 74, 741–751 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Bradley, W.G. Possible therapy for ALS based on the cyanobacteria/BMAA hypothesis. Amyotroph. Lateral Scler. 10 Suppl 2, 118–123 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Schmitt, N.D. & Agar, J.N. Parsing disease-relevant protein modifications from epiphenomena: perspective on the structural basis of SOD1-mediated ALS. J. Mass Spectrom. 52, 480–491 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dickson, D.W. Neuropathology of non-Alzheimer degenerative disorders. Int. J. Clin. Exp. Pathol. 3, 1–23 (2009).

    PubMed  Google Scholar 

  59. Wildburger, N.C. et al. Diversity of amyloid-beta proteoforms in the Alzheimer's disease brain. Sci. Rep. 7, 9520 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Kellie, J.F. et al. Quantitative measurement of intact alpha-synuclein proteoforms from post-mortem control and Parkinson's disease brain tissue by intact protein mass spectrometry. Sci. Rep. 4, 5797 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. McCann, H., Stevens, C.H., Cartwright, H. & Halliday, G.M. α-Synucleinopathy phenotypes. Parkinsonism Relat. Disord. 20 Suppl 1, S62–S67 (2014).

    Article  PubMed  Google Scholar 

  62. Dickson, D.W. Chapter 7 Ubiquitinopathies. Blue Books of Neurology 30, 165–185 (2007).

    Article  Google Scholar 

  63. Kabashi, E. & Durham, H.D. Failure of protein quality control in amyotrophic lateral sclerosis. Biochim. Biophys. Acta 1762, 1038–1050 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, J. et al. Top-down quantitative proteomics identified phosphorylation of cardiac troponin I as a candidate biomarker for chronic heart failure. J. Proteome Res. 10, 4054–4065 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mazur, M.T. et al. Quantitative analysis of intact apolipoproteins in human HDL by top-down differential mass spectrometry. Proc. Natl. Acad. Sci. USA 107, 7728–7733 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang, S., Raedschelders, K., Santos, M. & Van Eyk, J.E. Profiling B-type natriuretic peptide cleavage peptidoforms in human plasma by capillary electrophoresis with electrospray ionization mass spectrometry. J. Proteome Res. 16, 4515–4522 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Ansong, C. et al. Top-down proteomics reveals a unique protein S-thiolation switch in Salmonella typhimurium in response to infection-like conditions. Proc. Natl. Acad. Sci. USA 110, 10153–10158 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Carel, C. et al. Identification of specific posttranslational O-mycoloylations mediating protein targeting to the mycomembrane. Proc. Natl. Acad. Sci. USA 114, 4231–4236 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chamot-Rooke, J. et al. Posttranslational modification of pili upon cell contact triggers N. meningitidis dissemination. Science 331, 778–782 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. van Belkum, A., Welker, M., Erhard, M. & Chatellier, S. Biomedical mass spectrometry in today's and tomorrow's clinical microbiology laboratories. J. Clin. Microbiol. 50, 1513–1517 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lévesque, S. et al. A side by side comparison of Bruker Biotyper and VITEK MS: utility of MALDI-TOF MS technology for microorganism identification in a public health reference laboratory. PLoS One 10, e0144878 (2015). This manuscript describes the use of intact mass measurement to provide a specific, orthogonal method for microorganism identification in the clinical research lab.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Hoppmann, C. et al. Site-specific incorporation of phosphotyrosine using an expanded genetic code. Nat. Chem. Biol. 13, 842–844 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Luo, X. et al. Genetically encoding phosphotyrosine and its nonhydrolyzable analog in bacteria. Nat. Chem. Biol. 13, 845–849 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yang, A. et al. A chemical biology route to site-specific authentic protein modifications. Science 354, 623–626 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Baker, J.L., Çelik, E. & DeLisa, M.P. Expanding the glycoengineering toolbox: the rise of bacterial N-linked protein glycosylation. Trends Biotechnol. 31, 313–323 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Oza, J.P. et al. Robust production of recombinant phosphoproteins using cell-free protein synthesis. Nat. Commun. 6, 8168 (2015).

    Article  PubMed  Google Scholar 

  77. Müller, M.M. & Muir, T.W. Histones: at the crossroads of peptide and protein chemistry. Chem. Rev. 115, 2296–2349 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Hornsby, M. et al. A high through-put platform for recombinant antibodies to folded proteins. Mol. Cell. Proteomics 14, 2833–2847 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Porpiglia, E. et al. High-resolution myogenic lineage mapping by single-cell mass cytometry. Nat. Cell Biol. 19, 558–567 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Prabakaran, S., Lippens, G., Steen, H. & Gunawardena, J. Post-translational modification: nature's escape from genetic imprisonment and the basis for dynamic information encoding. Wiley Interdiscip. Rev. Syst. Biol. Med. 4, 565–583 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kirschner, M. & Gerhart, J. Evolvability. Proc. Natl. Acad. Sci. USA 95, 8420–8427 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Edwards, A.V., Schwämmle, V. & Larsen, M.R. Neuronal process structure and growth proteins are targets of heavy PTM regulation during brain development. J. Proteomics 101, 77–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Sluchanko, N.N. & Gusev, N.B. Moonlighting chaperone-like activity of the universal regulatory 14-3-3 proteins. FEBS J. 284, 1279–1295 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Howard, T.E., Shai, S.Y., Langford, K.G., Martin, B.M. & Bernstein, K.E. Transcription of testicular angiotensin-converting enzyme (ACE) is initiated within the 12th intron of the somatic ACE gene. Mol. Cell. Biol. 10, 4294–4302 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schellenberger, U. et al. The precursor to B-type natriuretic peptide is an O-linked glycoprotein. Arch. Biochem. Biophys. 451, 160–166 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Zhang, P. et al. Multiple reaction monitoring to identify site-specific troponin I phosphorylated residues in the failing human heart. Circulation 126, 1828–1837 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Garcia, B.A., Pesavento, J.J., Mizzen, C.A. & Kelleher, N.L. Pervasive combinatorial modification of histone H3 in human cells. Nat. Methods 4, 487–489 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Pesavento, J.J., Bullock, C.R., LeDuc, R.D., Mizzen, C.A. & Kelleher, N.L. Combinatorial modification of human histone H4 quantitated by two-dimensional liquid chromatography coupled with top down mass spectrometry. J. Biol. Chem. 283, 14927–14937 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bush, D.R., Zang, L., Belov, A.M., Ivanov, A.R. & Karger, B.L. High resolution CZE-MS quantitative characterization of intact biopharmaceutical proteins: proteoforms of interferon-b1. Anal. Chem. 88, 1138–1146 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Peng, Y. et al. Top-down proteomics reveals concerted reductions in myofilament and Z-disc protein phosphorylation after acute myocardial infarction. Mol. Cell. Proteomics 13, 2752–2764 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cummings, R.D. The repertoire of glycan determinants in the human glycome. Mol. Biosyst. 5, 1087–1104 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Sidoli, S. et al. Middle-down hybrid chromatography/tandem mass spectrometry workflow for characterization of combinatorial post-translational modifications in histones. Proteomics 14, 2200–2211 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This article was enabled through generous funding of the Paul G. Allen Frontiers Program (Award 11715 to N.L.K.), which supports the curation of a human proteoform atlas (http://allen.kelleher.northwestern.edu). N.L.K. also acknowledges the NIH (P41 GM108569) and H. Thomas, M. Mullowney and S. Bratanch for their support and assistance in constructing this collaborative manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil L Kelleher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aebersold, R., Agar, J., Amster, I. et al. How many human proteoforms are there?. Nat Chem Biol 14, 206–214 (2018). https://doi.org/10.1038/nchembio.2576

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2576

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing