Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Features and regulation of non-enzymatic post-translational modifications

Abstract

Non-enzymatic post-translational modifications of proteins can occur when a nucleophilic or redox-sensitive amino acid side chain encounters a reactive metabolite. In many cases, the biological function of these modifications is limited by their irreversibility, and consequently these non-enzymatic modifications are often considered as indicators of stress and disease. Certain non-enzymatic post-translational modifications, however, can be reversed, which provides an additional layer of regulation and renders these modifications suitable for controlling a diverse set of cellular processes ranging from signaling to metabolism. Here we summarize recent examples of irreversible and reversible non-enzymatic modifications, with an emphasis on the latter category. We use two examples, lysine glutarylation and pyrophosphorylation, to highlight principles of the regulation of reversible non-enzymatic post-translational modifications in more detail. Overall, a picture emerges that goes well beyond nonspecific chemical reactions and cellular damage, and instead portrays multifaceted functions of non-enzymatic post-translational modifications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Post-translational modifications of proteins occur via a number of different mechanisms.
Figure 2: Summary of selected non-enzymatic PTMs.
Figure 3: Reversible cysteine oxidation in PTP-1B.
Figure 4: Lysine glutarylation of proteins.
Figure 5: Protein pyrophosphorylation.

Similar content being viewed by others

References

  1. Walsh, C.T., Garneau-Tsodikova, S. & Gatto, G.J. Jr. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew. Chem. Int. Ed. Engl. 44, 7342–7372 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. UniProt Consortium. Controlled vocabulary of posttranslational modifications (PTM). UniProt http://www.uniprot.org/docs/ptmlist (2017).

  3. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Meierhofer, D., Wang, X., Huang, L. & Kaiser, P. Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J. Proteome Res. 7, 4566–4576 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Keller, M.A., Piedrafita, G. & Ralser, M. The widespread role of non-enzymatic reactions in cellular metabolism. Curr. Opin. Biotechnol. 34, 153–161 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ubersax, J.A. & Ferrell, J.E. Jr. Mechanisms of specificity in protein phosphorylation. Nat. Rev. Mol. Cell Biol. 8, 530–541 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Manning, G., Whyte, D.B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Bretón-Romero, R. & Lamas, S. Hydrogen peroxide signaling in vascular endothelial cells. Redox Biol. 2, 529–534 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Claiborne, A. et al. Protein-sulfenic acids: diverse roles for an unlikely player in enzyme catalysis and redox regulation. Biochemistry 38, 15407–15416 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Ahmed, N. Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Res. Clin. Pract. 67, 3–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Dickinson, D.A. & Forman, H.J.A.Y. Glutathione in defense and signaling: lessons from a small thiol. Ann. NY Acad. Sci. 973, 488–504 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Forman, H.J., Ursini, F. & Maiorino, M. An overview of mechanisms of redox signaling. J. Mol. Cell. Cardiol. 73, 2–9 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Jaisson, S. & Gillery, P. Evaluation of nonenzymatic posttranslational modification-derived products as biomarkers of molecular aging of proteins. Clin. Chem. 56, 1401–1412 (2010).

    Article  PubMed  Google Scholar 

  14. Ray, P.D., Huang, B.-W. & Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 24, 981–990 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stadtman, E.R. Protein oxidation and aging. Free Radic. Res. 40, 1250–1258 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Singh, R., Barden, A., Mori, T. & Beilin, L. Advanced glycation end-products: a review. Diabetologia 44, 129–146 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Verbrugge, F.H., Tang, W.H.W. & Hazen, S.L. Protein carbamylation and cardiovascular disease. Kidney Int. 88, 474–478 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dalle-Donne, I., Giustarini, D., Colombo, R., Rossi, R. & Milzani, A. Protein carbonylation in human diseases. Trends Mol. Med. 9, 169–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Frizzell, N., Lima, M. & Baynes, J.W. Succination of proteins in diabetes. Free Radic. Res. 45, 101–109 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Kalim, S., Karumanchi, S.A., Thadhani, R.I. & Berg, A.H. Protein carbamylation in kidney disease: pathogenesis and clinical implications. Am. J. Kidney Dis. 64, 793–803 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baynes, J.W. & Thorpe, S.R. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48, 1–9 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Ciolino, H.P. & Levine, R.L. Modification of proteins in endothelial cell death during oxidative stress. Free Radic. Biol. Med. 22, 1277–1282 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Dickinson, B.C. & Chang, C.J. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7, 504–511 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Madian, A.G. & Regnier, F.E. Proteomic identification of carbonylated proteins and their oxidation sites. J. Proteome Res. 9, 3766–3780 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mirzaei, H. & Regnier, F. Creation of allotypic active sites during oxidative stress. J. Proteome Res. 5, 2159–2168 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Thomson, E. et al. Identifying peroxidases and their oxidants in the early pathology of cystic fibrosis. Free Radic. Biol. Med. 49, 1354–1360 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Hartley, D.P., Kroll, D.J. & Petersen, D.R. Prooxidant-initiated lipid peroxidation in isolated rat hepatocytes: detection of 4-hydroxynonenal- and malondialdehyde-protein adducts. Chem. Res. Toxicol. 10, 895–905 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Rahman, I. et al. 4-Hydroxy-2-nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 166, 490–495 (2002).

    Article  PubMed  Google Scholar 

  29. Aksenov, M.Y., Aksenova, M.V., Butterfield, D.A., Geddes, J.W. & Markesbery, W.R. Protein oxidation in the brain in Alzheimer's disease. Neuroscience 103, 373–383 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Fu, M.-X. et al. The advanced glycation end product, Ne-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions. J. Biol. Chem. 271, 9982–9986 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Lo, T.W., Westwood, M.E., McLellan, A.C., Selwood, T. & Thornalley, P.J. Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N α-acetylarginine, N α-acetylcysteine, and N α-acetyllysine, and bovine serum albumin. J. Biol. Chem. 269, 32299–32305 (1994).

    CAS  PubMed  Google Scholar 

  32. Manini, P., La Pietra, P., Panzella, L., Napolitano, A. & d'Ischia, M. Glyoxal formation by Fenton-induced degradation of carbohydrates and related compounds. Carbohydr. Res. 341, 1828–1833 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Glomb, M.A. & Monnier, V.M. Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. J. Biol. Chem. 270, 10017–10026 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Thornalley, P.J. et al. Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem. J. 375, 581–592 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dyer, D.G. et al. Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J. Clin. Invest. 91, 2463–2469 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alderson, N.L. et al. S-(2-Succinyl)cysteine: a novel chemical modification of tissue proteins by a Krebs cycle intermediate. Arch. Biochem. Biophys. 450, 1–8 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Blatnik, M., Thorpe, S.R. & Baynes, J.W. Succination of proteins by fumarate: mechanism of inactivation of glyceraldehyde-3-phosphate dehydrogenase in diabetes. Ann. NY Acad. Sci. 1126, 272–275 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Adam, J., Yang, M., Soga, T. & Pollard, P.J. Rare insights into cancer biology. Oncogene 33, 2547–2556 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Bardella, C. et al. Aberrant succination of proteins in fumarate hydratase-deficient mice and HLRCC patients is a robust biomarker of mutation status. J. Pathol. 225, 4–11 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Adam, J. et al. Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 20, 524–537 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ohta, T. et al. Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res. 68, 1303–1309 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Kraus, L.M. & Kraus, A.P. Jr. Carbamoylation of amino acids and proteins in uremia. Kidney Int. Suppl. 78, S102–S107 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, Z. et al. Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat. Med. 13, 1176–1184 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Dalle-Donne, I. et al. Protein carbonylation, cellular dysfunction, and disease progression. J. Cell. Mol. Med. 10, 389–406 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Koeck, T. et al. Rapid and selective oxygen-regulated protein tyrosine denitration and nitration in mitochondria. J. Biol. Chem. 279, 27257–27262 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Aulak, K.S., Koeck, T., Crabb, J.W. & Stuehr, D.J. Dynamics of protein nitration in cells and mitochondria. Am. J. Physiol. Heart Circ. Physiol. 286, H30–H38 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Sengupta, S. & Bhattacharjee, A. Dynamics of protein tyrosine nitration and denitration. RE:view 1, 1–13 (2016).

    Google Scholar 

  48. Deeb, R.S. et al. Characterization of a cellular denitrase activity that reverses nitration of cyclooxygenase. Am. J. Physiol. Heart Circ. Physiol. 305, H687–H698 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim, H.-Y. & Gladyshev, V.N. Methionine sulfoxide reduction in mammals: characterization of methionine-R-sulfoxide reductases. Mol. Biol. Cell 15, 1055–1064 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Drazic, A. & Winter, J. The physiological role of reversible methionine oxidation. Biochim. Biophys. Acta 1844, 1367–1382 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Kaya, A., Lee, B.C. & Gladyshev, V.N. Regulation of protein function by reversible methionine oxidation and the role of selenoprotein MsrB1. Antioxid. Redox Signal. 23, 814–822 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Drazic, A. et al. Methionine oxidation activates a transcription factor in response to oxidative stress. Proc. Natl. Acad. Sci. USA 110, 9493–9498 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Paulsen, C.E. & Carroll, K.S. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem. Rev. 113, 4633–4679 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chung, H.S., Wang, S.-B., Venkatraman, V., Murray, C.I. & Van Eyk, J.E. Cysteine oxidative posttranslational modifications: emerging regulation in the cardiovascular system. Circ. Res. 112, 382–392 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Buckley, D.A., Cheng, A., Kiely, P.A., Tremblay, M.L. & O'Connor, R. Regulation of insulin-like growth factor type I (IGF-I) receptor kinase activity by protein tyrosine phosphatase 1B (PTP-1B) and enhanced IGF-I-mediated suppression of apoptosis and motility in PTP-1B-deficient fibroblasts. Mol. Cell. Biol. 22, 1998–2010 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mahadev, K., Zilbering, A., Zhu, L. & Goldstein, B.J. Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade. J. Biol. Chem. 276, 21938–21942 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Lee, S.-R., Kwon, K.-S., Kim, S.-R. & Rhee, S.G. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273, 15366–15372 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Salmeen, A. et al. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423, 769–773 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. van Montfort, R.L.M., Congreve, M., Tisi, D., Carr, R. & Jhoti, H. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423, 773–777 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Denu, J.M. & Tanner, K.G. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 37, 5633–5642 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Moellering, R.E. & Cravatt, B.F. Functional lysine modification by an intrinsically reactive primary glycolytic metabolite. Science 341, 549–553 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lin, H., Su, X. & He, B. Protein lysine acylation and cysteine succination by intermediates of energy metabolism. ACS Chem. Biol. 7, 947–960 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang, Z. et al. Identification of lysine succinylation as a new post-translational modification. Nat. Chem. Biol. 7, 58–63 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Baeza, J., Smallegan, M.J. & Denu, J.M. Site-specific reactivity of nonenzymatic lysine acetylation. ACS Chem. Biol. 10, 122–128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kulkarni, R.A. et al. Discovering targets of non-enzymatic acylation by thioester reactivity profiling. Cell Chem. Biol. 24, 231–242 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wagner, G.R. & Hirschey, M.D. Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases. Mol. Cell 54, 5–16 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tan, M. et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab. 19, 605–617 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Du, J. et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334, 806–809 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wagner, G.R. & Payne, R.M. Widespread and enzyme-independent Ne-acetylation and Ne-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J. Biol. Chem. 288, 29036–29045 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wagner, G.R. et al. A class of reactive acyl-CoA species reveals the non-enzymatic origins of protein acylation. Cell Metab. 25, 823–837.e8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. McCleary, W.R., Stock, J.B. & Ninfa, A.J. Is acetyl phosphate a global signal in Escherichia coli? J. Bacteriol. 175, 2793–2798 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Klein, A.H., Shulla, A., Reimann, S.A., Keating, D.H. & Wolfe, A.J. The intracellular concentration of acetyl phosphate in Escherichia coli is sufficient for direct phosphorylation of two-component response regulators. J. Bacteriol. 189, 5574–5581 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Azevedo, C., Livermore, T. & Saiardi, A. Protein polyphosphorylation of lysine residues by inorganic polyphosphate. Mol. Cell 58, 71–82 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Chakraborty, A. et al. Inositol pyrophosphates inhibit Akt signaling, thereby regulating insulin sensitivity and weight gain. Cell 143, 897–910 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Saiardi, A., Resnick, A.C., Snowman, A.M., Wendland, B. & Snyder, S.H. Inositol pyrophosphates regulate cell death and telomere length through phosphoinositide 3-kinase-related protein kinases. Proc. Natl. Acad. Sci. USA 102, 1911–1914 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Azevedo, C., Burton, A., Ruiz-Mateos, E., Marsh, M. & Saiardi, A. Inositol pyrophosphate mediated pyrophosphorylation of AP3B1 regulates HIV-1 Gag release. Proc. Natl. Acad. Sci. USA 106, 21161–21166 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chanduri, M. et al. Inositol hexakisphosphate kinase 1 (IP6K1) activity is required for cytoplasmic dynein-driven transport. Biochem. J. 473, 3031–3047 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Penkert, M. et al. Unambiguous identification of serine and threonine pyrophosphorylation using neutral-loss-triggered electron-transfer/higher-energy collision dissociation. Anal. Chem. 89, 3672–3680 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Saiardi, A., Bhandari, R., Resnick, A.C., Snowman, A.M. & Snyder, S.H. Phosphorylation of proteins by inositol pyrophosphates. Science 306, 2101–2105 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Bhandari, R. et al. Protein pyrophosphorylation by inositol pyrophosphates is a posttranslational event. Proc. Natl. Acad. Sci. USA 104, 15305–15310 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wu, M. et al. Elucidating diphosphoinositol polyphosphate function with nonhydrolyzable analogues. Angew. Chem. Int. Ed. Engl. 53, 7192–7197 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Hager, A. et al. Cellular cations control conformational switching of inositol pyrophosphate analogues. Chemistry 22, 12406–12414 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yates, L.M. & Fiedler, D. Establishing the stability and reversibility of protein pyrophosphorylation with synthetic peptides. ChemBioChem 16, 415–423 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Beltrao, P., Bork, P., Krogan, N.J. & van Noort, V. Evolution and functional cross-talk of protein post-translational modifications. Mol. Syst. Biol. 9, 714 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Yoshida, T. et al. Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat. Chem. Biol. 2, 596–607 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Mustafa, A.K. et al. H2S signals through protein S-sulfhydration. Sci. Signal. 2, ra72 (2009).

    PubMed  PubMed Central  Google Scholar 

  87. Kathayat, R.S. et al. Active and dynamic mitochondrial S-depalmitoylation revealed by targeted fluorescent probes. Nat. Commun. 9, 334 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

R.H. gratefully acknowledges funding from the Leibniz-Gemeinschaft (SAW-2017-FMP-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothea Fiedler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harmel, R., Fiedler, D. Features and regulation of non-enzymatic post-translational modifications. Nat Chem Biol 14, 244–252 (2018). https://doi.org/10.1038/nchembio.2575

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2575

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing