Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chemical hijacking of auxin signaling with an engineered auxin–TIR1 pair

Abstract

The phytohormone auxin indole-3-acetic acid (IAA) regulates nearly all aspects of plant growth and development. Despite substantial progress in our understanding of auxin biology, delineating specific auxin response remains a major challenge. Auxin regulates transcriptional response via its receptors, TIR1 and AFB F-box proteins. Here we report an engineered, orthogonal auxin–TIR1 receptor pair, developed through a bump-and-hole strategy, that triggers auxin signaling without interfering with endogenous auxin or TIR1/AFBs. A synthetic, convex IAA (cvxIAA) hijacked the downstream auxin signaling in vivo both at the transcriptomic level and in specific developmental contexts, only in the presence of a complementary, concave TIR1 (ccvTIR1) receptor. Harnessing the cvxIAA–ccvTIR1 system, we provide conclusive evidence for the role of the TIR1-mediated pathway in auxin-induced seedling acid growth. The cvxIAA–ccvTIR1 system serves as a powerful tool for solving outstanding questions in auxin biology and for precise manipulation of auxin-mediated processes as a controllable switch.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Engineering cvxIAA-ccvTIR1 pair by a bump-and-hole approach.
Figure 2: cvxIAA, but not active auxins, promotes the association of ccvTIR1 and IAA7DII peptide.
Figure 3: cvxIAA triggers global auxin-induced gene expression only in the seedlings expressing the engineered ccvTIR1.
Figure 4: cvxIAA inhibits root elongation and induces auxin-induced lateral root development only in the seedlings expressing the engineered ccvTIR1.
Figure 5: Hypocotyl acid growth mediated by the synthetic cvxIAA and an engineered ccvTIR1 pair.

References

  1. Woodward, A.W. & Bartel, B. Auxin: regulation, action, and interaction. Ann. Bot. 95, 707–735 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Teale, W.D., Paponov, I.A. & Palme, K. Auxin in action: signalling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 7, 847–859 (2006).

    CAS  PubMed  Article  Google Scholar 

  3. Dharmasiri, N., Dharmasiri, S. & Estelle, M. The F-box protein TIR1 is an auxin receptor. Nature 435, 441–445 (2005).

    CAS  PubMed  Article  Google Scholar 

  4. Gray, W.M. et al. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev. 13, 1678–1691 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Kepinski, S. & Leyser, O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435, 446–451 (2005).

    CAS  PubMed  Article  Google Scholar 

  6. Tan, X. et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640–645 (2007).

    CAS  PubMed  Article  Google Scholar 

  7. Gray, W.M., Kepinski, S., Rouse, D., Leyser, O. & Estelle, M. Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414, 271–276 (2001).

    CAS  PubMed  Article  Google Scholar 

  8. Calderón Villalobos, L.I. et al. A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat. Chem. Biol. 8, 477–485 (2012).

    PubMed  Article  CAS  Google Scholar 

  9. Shah, K., Liu, Y., Deirmengian, C. & Shokat, K.M. Engineering unnatural nucleotide specificity for Rous sarcoma virus tyrosine kinase to uniquely label its direct substrates. Proc. Natl. Acad. Sci. USA 94, 3565–3570 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. Bishop, A.C. et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395–401 (2000).

    CAS  PubMed  Article  Google Scholar 

  11. Baud, M.G.J. et al. A bump-and-hole approach to engineer controlled selectivity of BET bromodomain chemical probes. Science 346, 638–641 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Kato, H. et al. Auxin-mediated transcriptional system with a minimal set of components is critical for morphogenesis through the life cycle in Marchantia polymorpha. PLoS Genet. 11, e1005084 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. Prigge, M.J., Lavy, M., Ashton, N.W. & Estelle, M. Physcomitrella patens auxin-resistant mutants affect conserved elements of an auxin-signaling pathway. Curr. Biol. 20, 1907–1912 (2010).

    CAS  PubMed  Article  Google Scholar 

  14. Sheard, L.B. et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468, 400–405 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Friml, J. et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426, 147–153 (2003).

    CAS  PubMed  Article  Google Scholar 

  16. Blilou, I. et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433, 39–44 (2005).

    CAS  PubMed  Article  Google Scholar 

  17. Lavenus, J. et al. Lateral root development in Arabidopsis: fifty shades of auxin. Trends Plant Sci. 18, 450–458 (2013).

    CAS  PubMed  Article  Google Scholar 

  18. Fukaki, H., Tameda, S., Masuda, H. & Tasaka, M. Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J. 29, 153–168 (2002).

    CAS  PubMed  Article  Google Scholar 

  19. Takahashi, K., Hayashi, K. & Kinoshita, T. Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis. Plant Physiol. 159, 632–641 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Hager, A. Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. J. Plant Res. 116, 483–505 (2003).

    CAS  PubMed  Article  Google Scholar 

  21. Schenck, D., Christian, M., Jones, A. & Lüthen, H. Rapid auxin-induced cell expansion and gene expression: a four-decade-old question revisited. Plant Physiol. 152, 1183–1185 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Parry, G. et al. Complex regulation of the TIR1/AFB family of auxin receptors. Proc. Natl. Acad. Sci. USA 106, 22540–22545 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. Walsh, T.A. et al. Mutations in an auxin receptor homolog AFB5 and in SGT1b confer resistance to synthetic picolinate auxins and not to 2,4-dichlorophenoxyacetic acid or indole-3-acetic acid in Arabidopsis. Plant Physiol. 142, 542–552 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Fendrych, M., Leung, J. & Friml, J. TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls. eLife 5, e19048 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  25. Spartz, A.K. et al. The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion. Plant J. 70, 978–990 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Spartz, A.K. et al. SAUR inhibition of PP2C-D phosphatases activates plasma membrane H+-ATPases to promote cell expansion in Arabidopsis. Plant Cell 26, 2129–2142 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Rayle, D.L. & Cleland, R. Enhancement of wall loosening and elongation by acid solutions. Plant Physiol. 46, 250–253 (1970).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Spartz, A.K. et al. Constitutive expression of Arabidopsis SMALL AUXIN UP RNA19 (SAUR19) in tomato confers auxin-independent hypocotyl elongation. Plant Physiol. 173, 1453–1462 (2017).

    CAS  PubMed  Article  Google Scholar 

  29. Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods 6, 917–922 (2009).

    CAS  PubMed  Article  Google Scholar 

  30. Holland, A.J., Fachinetti, D., Han, J.S. & Cleveland, D.W. Inducible, reversible system for the rapid and complete degradation of proteins in mammalian cells. Proc. Natl. Acad. Sci. USA 109, E3350–E3357 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. Zhang, L., Ward, J.D., Cheng, Z. & Dernburg, A.F. The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans. Development 142, 4374–4384 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Nora, E.P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Natsume, T., Kiyomitsu, T., Saga, Y. & Kanemaki, M.T. Rapid protein depletion in human cells by auxin-inducible degron tagging with short homology donors. Cell Rep. 15, 210–218 (2016).

    CAS  PubMed  Article  Google Scholar 

  34. Yu, H. et al. Mutations in the TIR1 auxin receptor that increase affinity for auxin/indole-3-acetic acid proteins result in auxin hypersensitivity. Plant Physiol. 162, 295–303 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Yu, H. et al. Untethering the TIR1 auxin receptor from the SCF complex increases its stability and inhibits auxin response. Nat. Plants 1, 14030 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Nemhauser, J.L. & Torii, K.U. Plant synthetic biology for molecular engineering of signalling and development. Nat. Plants 2, 16010 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Ritz, C., Baty, F., Streibig, J.C. & Gerhard, D. Dose-response analysis using R. PLoS One 10, e0146021 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. Benková, E. et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115, 591–602 (2003).

    PubMed  Article  Google Scholar 

  39. Ruegger, M. et al. The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. Genes Dev. 12, 198–207 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Savaldi-Goldstein, S. et al. New auxin analogs with growth-promoting effects in intact plants reveal a chemical strategy to improve hormone delivery. Proc. Natl. Acad. Sci. USA 105, 15190–15195 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. Estojak, J., Brent, R. & Golemis, E.A. Correlation of two-hybrid affinity data with in vitro measurements. Mol. Cell. Biol. 15, 5820–5829 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Hayashi, Y. et al. Biochemical characterization of in vitro phosphorylation and dephosphorylation of the plasma membrane H+-ATPase. Plant Cell Physiol. 51, 1186–1196 (2010).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank M. Estelle (University of California, San Diego) for inspiring us and providing tir1-1 afb2-3 seeds; H. Fukaki (Kobe University) for slr-1 seeds; Yeast Genetics Resource Center and Y. Tsuchiya (Nagoya University) for Y2H vectors; Peptide/protein center at WPI-ITbM for biotinyl peptides; J. Bode for his visionary comments during the conceptualization of the project; J. Nemhauser and R. Cleland for commenting on the manuscript. K.U.T. dedicates this manuscript to R. Cleland, who proposed the acid growth theory in 1970, for his continued mentorship at the Univ. Washington. This work was funded by MEXT/JSPS KAKENHI (JP26291057, JP16H01237 and JP17H06476 to K.U.T.; JP16H01462, JP17H03695 and JP17KT0017 to N.U.; JP26440140 to K.T.; JP15H05956 to T.K.; JP17H06350 to S.H.; JP16H01472 and S1511023 to S.K.), Japan Science and Technology Agency (PRESTO, JPMJPR15Q9 to S.H.; ERATO, JPMJER1302 to K.I.), Howard Hughes Medical Institute (HHMI) and Gordon and Betty Moore Foundation (GBMF3035) to K.UT. S.H. is a JST PRESTO investigator, K.I. is a JST ERATO investigator and K.U.T. is an HHMI-GBMF Investigator and University Washington Endowed Distinguished Professor of Biology.

Author information

Authors and Affiliations

Authors

Contributions

K.U.T. conceived the project; N.U., S.H., K.T. and K.U.T. designed research; N.U. and R.I. performed molecular cloning, yeast two-hybrid assays, and transgenic plants generation; N.U., R.I., and K.T. conducted qRT-PCR and phenotypic characterization; S.H., H.Z., R.Y., and M.Y. performed synthesis and NMR analyses of auxin analogs; K.T. performed biochemical analyses; S.K. performed next generation sequencing, and S.K., N.U. and T.A.E. performed bioinformatics; T.A.E. developed the Bobbin Dendrogram Plot Generator; M.N. and Y.T. provided reagents; N.U., S.H., K.T., T.K., K.I., and K.U.T. analyzed data; K.U.T. performed R-drc analysis; K.U.T., N.U., K.T., and S.H. wrote the manuscript; all authors read and approved the manuscript.

Corresponding authors

Correspondence to Shinya Hagihara or Keiko U Torii.

Ethics declarations

Competing interests

The cvxIAA–ccvTIR1 system reported here has been filed for a US provisional patent (No. 62/468642) in which N.U., R.I., K.I., S.H., and K.U.T. appear as inventors.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–3, Supplementary Figures 1–14 (PDF 2824 kb)

Reporting Summary (PDF 130 kb)

Supplementary Note 1

Synthetic procedures (PDF 5619 kb)

Supplementary Data Set 1

Differentially expressed genes in wild type, 35S::TIR1 and 35S::ccvTIR1 by IAA and cvxIAA treatments (XLSX 230 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Uchida, N., Takahashi, K., Iwasaki, R. et al. Chemical hijacking of auxin signaling with an engineered auxin–TIR1 pair. Nat Chem Biol 14, 299–305 (2018). https://doi.org/10.1038/nchembio.2555

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2555

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing