Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Employing a biochemical protecting group for a sustainable indigo dyeing strategy

Abstract

Indigo is an ancient dye uniquely capable of producing the signature tones in blue denim; however, the dyeing process requires chemical steps that are environmentally damaging. We describe a sustainable dyeing strategy that not only circumvents the use of toxic reagents for indigo chemical synthesis but also removes the need for a reducing agent for dye solubilization. This strategy utilizes a glucose moiety as a biochemical protecting group to stabilize the reactive indigo precursor indoxyl to form indican, preventing spontaneous oxidation to crystalline indigo during microbial fermentation. Application of a β-glucosidase removes the protecting group from indican, resulting in indigo crystal formation in the cotton fibers. We identified the gene coding for the glucosyltransferase PtUGT1 from the indigo plant Polygonum tinctorium and solved the structure of PtUGT1. Heterologous expression of PtUGT1 in Escherichia coli supported high indican conversion, and biosynthesized indican was used to dye cotton swatches and a garment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A glucosyl protecting group enables control over the timing and location of indigo dyeing.
Figure 2: The crystal structure of PtUGT1 with bound indoxyl sulfate.
Figure 3: Heterologous expression of PtUGT1 stabilizes indoxyl before it dimerizes, producing indican.
Figure 4: Production and growth curves for indican and indigo production.
Figure 5: Bio-indican can be used as an effective, reductant-free cotton textile dye.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Splitstoser, J.C., Dillehay, T.D., Wouters, J. & Claro, A. Early pre-Hispanic use of indigo blue in Peru. Sci. Adv. 2, e1501623 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Balfour-Paul, J. Indigo (Firefly Books, 2011).

  3. Wolf, L.K. What's That Stuff? Blue Jeans. Chem. Eng. News 89, 44 (2011).

    Google Scholar 

  4. Schimper, C.B., Ibanescu, C. & Bechtold, T. Surface activation of dyed fabric for cellulase treatment. Biotechnol. J. 6, 1280–1285 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Pfleger, J. Process of making indoxyl derivatives. US Patent 680,395 (1901).

  6. Paul, R. Denim. (Elsevier Ltd., 2015).

  7. Blackburn, R.S., Bechtold, T. & John, P. The development of indigo reduction methods and pre-reduced indigo products. Color. Technol. 125, 193–207 (2009).

    Article  CAS  Google Scholar 

  8. Ensley, B.D. et al. Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science 222, 167–169 (1983).

    Article  CAS  PubMed  Google Scholar 

  9. Murdock, D., Ensley, B.D., Serdar, C. & Thalen, M. Construction of metabolic operons catalyzing the de novo biosynthesis of indigo in Escherichia coli. Nat. Biotechnol. 11, 381–386 (1993).

    Article  CAS  Google Scholar 

  10. Berry, A., Dodge, T.C., Pepsin, M. & Weyler, W. Application of metabolic engineering to improve both the production and use of biotech indigo. J. Ind. Microbiol. Biotechnol. 28, 127–133 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Han, G.H. et al. Bio-indigo production in two different fermentation systems using recombinant Escherichia coli cells harboring a flavin-containing monooxygenase gene (fmo). Process Biochem. 46, 788–791 (2011).

    Article  CAS  Google Scholar 

  12. Padden, A.N. et al. An indigo-reducing moderate thermophile from a woad vat, Clostridium isatidis sp. nov. Int. J. Syst. Bacteriol. 49, 1025–1031 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Yumoto, I. et al. Alkalibacterium psychrotolerans sp. nov., a psychrotolerant obligate alkaliphile that reduces an indigo dye. Int. J. Syst. Evol. Microbiol 54, 2379–2383 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Gäng, M., Krüger, R. & Miederer, P. Concentrated leucoindigo solutions. US Patent 6,428,581 (2002).

  15. Roessler, A., Crettenand, D., Dossenbach, O. & Rys, P. Electrochemical reduction of indigo in fixed and fluidized beds of graphite granules. J. Appl. Electrochem. 33, 901–908 (2003).

    Article  CAS  Google Scholar 

  16. Minami, Y., Nishimura, O., Hara-Nishimura, I., Nishimura, M. & Matsubara, H. Tissue and intracellular localization of indican and the purification and characterization of indican synthase from indigo plants. Plant Cell Physiol. 41, 218–225 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Minami, Y. et al. β-Glucosidase in the indigo plant: intracellular localization and tissue specific expression in leaves. Plant Cell Physiol. 38, 1069–1074 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Dang, T.-T.T., Chen, X. & Facchini, P.J. Acetylation serves as a protective group in noscapine biosynthesis in opium poppy. Nat. Chem. Biol. 11, 104–106 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Chen, J. et al. Biosynthesis of the active compounds of Isatis indigotica based on transcriptome sequencing and metabolites profiling. BMC Genomics 14, 857 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Tang, X. et al. High-throughput sequencing and De Novo assembly of the Isatis indigotica transcriptome. PLoS One 9, e102963–e102968 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Minami, Y., Sarangi, B.K. & Thul, S.T. Transcriptome analysis for identification of indigo biosynthesis pathway genes in Polygonum tinctorium. Biologia 70, 1026–1032 (2015).

    Article  CAS  Google Scholar 

  22. John, P. in Handbook of Natural Colorants (eds. Bechtold, T. & Mussak, R) Ch. 8 (John Wiley and Sons, 2009).

  23. Gilbert, K.G. et al. Quantitative analysis of indigo and indigo precursors in leaves of Isatis spp. and Polygonum tinctorium. Biotechnol. Prog. 20, 1289–1292 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Grabherr, M.G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mackenzie, P.I. et al. The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics 7, 255–269 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P.M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Lairson, L.L., Henrissat, B., Davies, G.J. & Withers, S.G. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77, 521–555 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Osmani, S.A., Bak, S. & Møller, B.L. Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling. Phytochemistry 70, 325–347 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, X. Structure, mechanism and engineering of plant natural product glycosyltransferases. FEBS Lett. 583, 3303–3309 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Loutre, C. et al. Isolation of a glucosyltransferase from Arabidopsis thaliana active in the metabolism of the persistent pollutant 3,4-dichloroaniline. Plant J. 34, 485–493 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Brazier-Hicks, M. et al. Characterization and engineering of the bifunctional N- and O-glucosyltransferase involved in xenobiotic metabolism in plants. Proc. Natl. Acad. Sci. USA 104, 20238–20243 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nakamura, C.E. & Whited, G.M. Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 14, 454–459 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Yim, H. et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat. Chem. Biol. 7, 445–452 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Patnaik, R. & Liao, J.C. Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Appl. Environ. Microbiol. 60, 3903–3908 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Malla, S., Pandey, R.P., Kim, B.-G. & Sohng, J.K. Regiospecific modifications of naringenin for astragalin production in Escherichia coli. Biotechnol. Bioeng. 110, 2525–2535 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Lim, C.G. et al. Development of a recombinant Escherichia coli strain for overproduction of the plant pigment anthocyanin. Appl. Environ. Microbiol. 81, 6276–6284 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Choi, H.S. et al. A novel flavin-containing monooxygenase from Methylophaga sp. strain SK1 and its indigo synthesis in Escherichia coli. Biochem. Biophys. Res. Commun. 306, 930–936 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Anderson, J.C. et al. BglBricks: a flexible standard for biological part assembly. J. Biol. Eng. 4, 1 (2010).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Li, G. & Young, K.D. A cAMP-independent carbohydrate-driven mechanism inhibits tnaA expression and TnaA enzyme activity in Escherichia coli. Microbiology 160, 2079–2088 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Botsford, J.L. & DeMoss, R.D. Catabolite repression of tryptophanase in Escherichia coli. J. Bacteriol. 105, 303–312 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Minami, Y., Kanafuji, T. & Miura, K. Purification and characterization of a β-glucosidase from Polygonum tinctorium, which catalyzes preferentially the hydrolysis of indican. Biosci. Biotechnol. Biochem. 60, 147–149 (1996).

    Article  CAS  Google Scholar 

  42. Song, J., Imanaka, H., Imamura, K., Kajitani, K. & Nakanishi, K. Development of a highly efficient indigo dyeing method using indican with an immobilized β-glucosidase from Aspergillus niger. J. Biosci. Bioeng. 110, 281–287 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Kim, J.-Y., Lee, J.-Y., Shin, Y.-S. & Kim, G.-J. Characterization of an indican-hydrolyzing enzyme from Sinorhizobium meliloti. Process Biochem. 45, 892–896 (2010).

    Article  CAS  Google Scholar 

  44. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 0008 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Paavilainen, S., Hellman, J. & Korpela, T. Purification, characterization, gene cloning, and sequencing of a new β-glucosidase from Bacillus circulans subsp. alkalophilus. Appl. Environ. Microbiol. 59, 927–932 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hansen, E.H. et al. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae). Appl. Environ. Microbiol. 75, 2765–2774 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Moehs, C.P., Allen, P.V., Friedman, M. & Belknap, W.R. Cloning and expression of solanidine UDP-glucose glucosyltransferase from potato. Plant J. 11, 227–236 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Etters, J.N. Advances in indigo dyeing: implications for the dyer, apparel manufacturer and environment. Text. Chem. Color. 27, 17–22 (1995).

    CAS  Google Scholar 

  49. Sternberg, D., Vijayakumar, P. & Reese, E.T. β-Glucosidase: microbial production and effect on enzymatic hydrolysis of cellulose. Can. J. Microbiol. 23, 139–147 (1977).

    Article  CAS  PubMed  Google Scholar 

  50. Jäger, S., Brumbauer, A., Fehér, E., Réczey, K. & Kiss, L. Production and characterization of β-glucosidases from different Aspergillus strains. World J. Microbiol. Biotechnol. 17, 455–461 (2001).

    Article  Google Scholar 

  51. Bolger, A.M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Magoč, T. & Salzberg, S.L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Crusoe, M.R. et al. The khmer software package: enabling efficient nucleotide sequence analysis. F1000 Res. 4, 900 (2015).

    Article  Google Scholar 

  54. Schulz, M.H., Zerbino, D.R., Vingron, M. & Birney, E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28, 1086–1092 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Towns, J. et al. XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16, 62–74 (2014).

    Article  CAS  Google Scholar 

  56. Tabb, D.L., McDonald, W.H. & Yates, J.R., III. DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J. Proteome Res. 1, 21–26 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee, M.E., DeLoache, W.C., Cervantes, B. & Dueber, J.E. A highly characterized yeast toolkit for modular, multipart assembly. ACS Synth. Biol. 4, 975–986 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hoang, T.T., Karkhoff-Schweizer, R.R., Kutchma, A.J. & Schweizer, H.P. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212, 77–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186–190 (2010).

    Article  CAS  Google Scholar 

  61. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Afonine, P.V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 68, 352–367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Salentin, S., Schreiber, S., Haupt, V.J., Adasme, M.F. & Schroeder, M. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res. 43, W443–W447 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Holm, L. & Rosenström, P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545–W549 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Itaya, K. & Ui, M. A new micromethod for the colorimetric determination of inorganic phosphate. Clin. Chim. Acta 14, 361–366 (1966).

    Article  CAS  PubMed  Google Scholar 

  70. McKee, J.R. & Zanger, M. A microscale synthesis of indigo: vat dyeing. J. Chem. Educ. 68, A242 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the rest of the Berkeley iGEM 2013 team, C. Somerville, N. Sorek, S. Bauer, N. Harris, D. Savage, B. Sights, S. Wagner, and the Dueber Lab, especially S. Bhakta, D. Stanley, L. Latimer, P. Grewal, and S. Halperin, for valuable discussions and experimental assistance. The UC Berkeley Vincent J. Coates Genomics Sequencing Laboratory and Proteomics/Mass Spectrometry Laboratory provided transcriptome and protein sequencing. The M. Chang laboratory (University of California, Berkeley) provided the base E. coli strain. This work was supported by Bakar Fellows Program (fellowship to J.E.D.), NSF CBET 1605465 (J.E.D.), a generous gift from Levi Strauss & Co. (J.E.D.), the US Department of Defense (fellowship to T.M.H. and Z.N.R.) and Agilent (iGEM undergraduate fellowships). Crystallographic experiments were performed as part of the DOE Joint BioEnergy Institute (http://www.jbei.org) which is supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy. We thank the Berkeley Center for Structural Biology beamline staff for technical assistance during data collection. The BCSB is supported in part by the National Institutes of Health, National Institute of General Medical Sciences, and the Howard Hughes Medical Institute. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

T.M.H., Z.N.R., and J.E.D. designed the research. T.M.H., D.H.W., Z.N.R., B.C., and R.L.P. collected data. D.H.W. solved the crystallographic structure. T.M.H., D.H.W., Z.N.R., P.D.A., and J.E.D. analyzed the data. T.M.H., D.H.W., and J.E.D. wrote the paper.

Corresponding author

Correspondence to John E Dueber.

Ethics declarations

Competing interests

The authors declare competing financial interests in the form of a pending patent application, US application no. 62/127,778.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–5, Supplementary Figures 1–11 (PDF 15489 kb)

Life Sciences Reporting Summary (PDF 129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, T., Welner, D., Russ, Z. et al. Employing a biochemical protecting group for a sustainable indigo dyeing strategy. Nat Chem Biol 14, 256–261 (2018). https://doi.org/10.1038/nchembio.2552

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2552

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research