Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Translating metabolic exchange with imaging mass spectrometry

Abstract

Metabolic exchange between an organism and the environment, including interactions with neighboring organisms, is important for processes of organismal development. Here we develop and use thin-layer agar natural product MALDI-TOF imaging mass spectrometry of intact bacterial colonies grown on top of the MALDI target plate to study an interaction between two species of bacteria and provide direct evidence that Bacillus subtilis silences the defensive arsenal of Streptomyces coelicolor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thin layer agar natural product MALDI imaging.
Figure 2: Time course IMS of Bacillus subtilis strains and Streptomyces coelicolor cohabitation.

Similar content being viewed by others

References

  1. Shank, E.A. & Kolter, R. Curr. Opin. Microbiol. 12, 205–214 (2009).

    Article  CAS  Google Scholar 

  2. Gross, H. Appl. Microbiol. Biotechnol. 75, 267–277 (2007).

    Article  CAS  Google Scholar 

  3. Seeley, E.H. & Caprioli, R.M. Proc. Natl. Acad. Sci. USA 105, 18126–18131 (2008).

    Article  CAS  Google Scholar 

  4. Cornett, D.S., Reyzer, M.L., Chaurand, P. & Caprioli, R.M. Nat. Methods 4, 828–833 (2007).

    Article  CAS  Google Scholar 

  5. Esquenazi, E. et al. Mol. Biosyst. 4, 562–570 (2008).

    Article  CAS  Google Scholar 

  6. Simmons, T.L. et al. Proc. Natl. Acad. Sci. USA 105, 4587–4594 (2008).

    Article  CAS  Google Scholar 

  7. Leenders, F., Stein, T.H., Kablitz, B., Franke, P. & Vater, J. Rapid Commun. Mass Spectrom. 13, 943–949 (1999).

    Article  CAS  Google Scholar 

  8. Hagelin, G., Indrevoll, B. & Hoeg-Jensen, T. Int. J. Mass Spectrom. 268, 254–264 (2007).

    Article  CAS  Google Scholar 

  9. Babasaki, K., Takao, T., Shimonishi, Y. & Kurahashi, K. J. Biochem. 98, 585–603 (1985).

    Article  CAS  Google Scholar 

  10. Stein, T. Rapid Commun. Mass Spectrom. 22, 1146–1152 (2008).

    Article  CAS  Google Scholar 

  11. Vaidyanathan, S. et al. Anal. Chem. 80, 1942–1951 (2008).

    Article  CAS  Google Scholar 

  12. Chen, K. et al. J. Am. Soc. Mass Spectrom. 19, 1856–1866 (2008).

    Article  CAS  Google Scholar 

  13. Song, L. et al. J. Am. Chem. Soc. 128, 14754–14755 (2006).

    Article  CAS  Google Scholar 

  14. Lautru, S., Deeth, R.J., Bailey, L.M. & Challis, G.L. Nat. Chem. Biol. 1, 265–269 (2005).

    Article  CAS  Google Scholar 

  15. Wright, L.F. & Hopwood, D.A. J. Gen. Microbiol. 96, 289–297 (1976).

    Article  CAS  Google Scholar 

  16. Kodani, S. et al. Proc. Natl. Acad. Sci. USA 101, 11448–11453 (2004).

    Article  CAS  Google Scholar 

  17. Grunewald, J., Sieber, S.A. & Marahiel, M.A. Biochemistry 43, 2915–2925 (2004).

    Article  Google Scholar 

  18. Corre, C., Song, L., O'Rourke, S., Chater, K.F. & Challis, G.L. Proc. Natl. Acad. Sci. USA 105, 17510–17515 (2008).

    Article  CAS  Google Scholar 

  19. Branda, S.S., Gonzalez-Pastor, J.E., Ben-Yehuda, S., Losick, R. & Kolter, R. Proc. Natl. Acad. Sci. USA 98, 11621–11626 (2001).

    Article  CAS  Google Scholar 

  20. Liu, W.T. et al. Anal. Chem. 81, 4200–4209 (2009).

    Article  CAS  Google Scholar 

  21. Ng, J. et al. Nat. Methods 6, 596–599 (2009).

    Article  CAS  Google Scholar 

  22. Straight, P.D., Fischbach, M.A., Walsh, C.T., Rudner, D.Z. & Kolter, R. Proc. Natl. Acad. Sci. USA 104, 305–310 (2007).

    Article  CAS  Google Scholar 

  23. Butcher, R.A. et al. Proc. Natl. Acad. Sci. USA 104, 1506–1509 (2007).

    Article  CAS  Google Scholar 

  24. Quadri, L.E. et al. Biochemistry 37, 1585–1595 (1998).

    Article  CAS  Google Scholar 

  25. Straight, P.D., Willey, J.M. & Kolter, R. J. Bacteriol. 188, 4918–4925 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge M. Burkart (University of California, San Diego) for S. coelicolor A3(2). The funding was provided by the Beckman Foundation, the annotation of the cyclic peptides in this study was supported by NIHGM086283 (P.C.D.) and P.S. acknowledges financial support from Texas A&M University.

Author information

Authors and Affiliations

Authors

Contributions

Y.-L.Y., Y.X. and P.C.D. prepared bacterial cultures and performed IMS. Y.-L.Y., Y.X., P.S. and P.C.D. were involved in the data analysis and interpretation. P.S. prepared the mutant strains. Y.-L.Y., P.S. and P.C.D. wrote the paper.

Corresponding authors

Correspondence to Paul Straight or Pieter C Dorrestein.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 1809 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, YL., Xu, Y., Straight, P. et al. Translating metabolic exchange with imaging mass spectrometry. Nat Chem Biol 5, 885–887 (2009). https://doi.org/10.1038/nchembio.252

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.252

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing