Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Human antibody-based chemically induced dimerizers for cell therapeutic applications

Abstract

Chemically induced dimerizers (CIDs) have emerged as one of the most powerful tools for artificially regulating signaling pathways in cells; however, currently available CID systems lack the properties desired for use in regulating cellular therapies. Here, we report the development of human antibody-based chemically induced dimerizers (AbCIDs) from known small-molecule–protein complexes by selecting for synthetic antibodies that recognize the chemical epitope created by the bound small molecule. We demonstrate this concept by generating three antibodies that are highly selective for the BCL-xL–ABT-737 complex compared to BCL-xL alone. We show the potential of AbCIDs for application in regulating human cell therapies by using them to induce CRISPRa-mediated gene expression and to regulate CAR T-cell activation. We believe that the AbCIDs generated in this study will find application in regulating cell therapies and that the general method of AbCID development may lead to the creation of many new and orthogonal CIDs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Design and characterization of antibody-based chemically induced dimerizers (AbCIDs).
Figure 2: Characterization of the Fab AZ1 epitope.
Figure 3: A single-chain Fab version of AZ1 can be used as an intracellular AbCID to regulate CRISPRa-mediated gene activation.
Figure 4: AZ1 can be used as an extracellular AbCID to regulate CAR T-cell activation.

Accession codes

Accessions

Protein Data Bank

References

  1. 1

    Spencer, D.M., Wandless, T.J., Schreiber, S.L. & Crabtree, G.R. Controlling signal transduction with synthetic ligands. Science 262, 1019–1024 (1993).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2

    Fegan, A., White, B., Carlson, J.C. & Wagner, C.R. Chemically controlled protein assembly: techniques and applications. Chem. Rev. 110, 3315–3336 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3

    DeRose, R., Miyamoto, T. & Inoue, T. Manipulating signaling at will: chemically-inducible dimerization (CID) techniques resolve problems in cell biology. Pflugers Arch. 465, 409–417 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4

    Lienert, F., Lohmueller, J.J., Garg, A. & Silver, P.A. Synthetic biology in mammalian cells: next generation research tools and therapeutics. Nat. Rev. Mol. Cell Biol. 15, 95–107 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5

    Shekhawat, S.S. & Ghosh, I. Split-protein systems: beyond binary protein-protein interactions. Curr. Opin. Chem. Biol. 15, 789–797 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6

    Nguyen, D.P. et al. Ligand-binding domains of nuclear receptors facilitate tight control of split CRISPR activity. Nat. Commun. 7, 12009 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7

    Straathof, K.C. et al. An inducible caspase 9 safety switch for T-cell therapy. Blood 105, 4247–4254 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Di Stasi, A. et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 365, 1673–1683 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9

    DeFrancesco, L. CAR-T's forge ahead, despite Juno deaths. Nat. Biotechnol. 35, 6–7 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10

    Rivera, V.M. et al. A humanized system for pharmacologic control of gene expression. Nat. Med. 2, 1028–1032 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11

    Farrar, M.A., Alberol-Ila, J. & Perlmutter, R.M. Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization. Nature 383, 178–181 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12

    Miyamoto, T. et al. Rapid and orthogonal logic gating with a gibberellin-induced dimerization system. Nat. Chem. Biol. 8, 465–470 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13

    Erhart, D. et al. Chemical development of intracellular protein heterodimerizers. Chem. Biol. 20, 549–557 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14

    Kopytek, S.J., Standaert, R.F., Dyer, J.C. & Hu, J.C. Chemically induced dimerization of dihydrofolate reductase by a homobifunctional dimer of methotrexate. Chem. Biol. 7, 313–321 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15

    Liang, F.S., Ho, W.Q. & Crabtree, G.R. Engineering the ABA plant stress pathway for regulation of induced proximity. Sci. Signal. 4, rs2 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16

    Czlapinski, J.L. et al. Conditional glycosylation in eukaryotic cells using a biocompatible chemical inducer of dimerization. J. Am. Chem. Soc. 130, 13186–13187 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17

    Schellekens, H. Factors influencing the immunogenicity of therapeutic proteins. Nephrol. Dial. Transplant. 20, vi3–vi9 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18

    Lee, E.F. et al. Crystal structure of ABT-737 complexed with Bcl-xL: implications for selectivity of antagonists of the Bcl-2 family. Cell Death Differ. 14, 1711–1713 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19

    Czabotar, P.E., Lessene, G., Strasser, A. & Adams, J.M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15, 49–63 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20

    Besbes, S., Mirshahi, M., Pocard, M. & Billard, C. New dimension in therapeutic targeting of BCL-2 family proteins. Oncotarget 6, 12862–12871 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21

    Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005).

    CAS  Article  Google Scholar 

  22. 22

    Van Duyne, G.D., Standaert, R.F., Karplus, P.A., Schreiber, S.L. & Clardy, J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J. Mol. Biol. 229, 105–124 (1993).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23

    Hornsby, M. et al. A high through-put platform for recombinant antibodies to folded proteins. Mol. Cell. Proteomics 14, 2833–2847 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24

    Shah, N.B. & Duncan, T.M. Bio-layer interferometry for measuring kinetics of protein-protein interactions and allosteric ligand effects. J. Vis. Exp. 2014, e51383 (2014).

    Google Scholar 

  25. 25

    Tse, C. et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 68, 3421–3428 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Sattler, M. et al. Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275, 983–986 (1997).

    CAS  Article  Google Scholar 

  27. 27

    Koerber, J.T., Hornsby, M.J. & Wells, J.A. An improved single-chain Fab platform for efficient display and recombinant expression. J. Mol. Biol. 427, 576–586 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28

    Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29

    Qi, L.S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Gao, Y. et al. Complex transcriptional modulation with orthogonal and inducible dCas9 regulators. Nat. Methods 13, 1043–1049 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Fesnak, A.D., June, C.H. & Levine, B.L. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat. Rev. Cancer 16, 566–581 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Wu, C.Y., Roybal, K.T., Puchner, E.M., Onuffer, J. & Lim, W.A. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science 350, aab4077 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. 33

    Cao, Y. et al. Design of switchable chimeric antigen receptor T cells targeting breast cancer. Angew. Chem. Int. Ed. Engl. 55, 7520–7524 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34

    Rodgers, D.T. et al. Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies. Proc. Natl. Acad. Sci. USA 113, E459–E468 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35

    Ma, J.S. et al. Versatile strategy for controlling the specificity and activity of engineered T cells. Proc. Natl. Acad. Sci. USA 113, E450–E458 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36

    June, C.H., Levine, B.L., Porter, D.L., Kalos, M.D. & Michael, M.C. Compositions and methods for treatment of cancer. US Patent 9,540,445 (2017).

  37. 37

    Wei, P. et al. Bacterial virulence proteins as tools to rewire kinase pathways in yeast and immune cells. Nature 488, 384–388 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38

    Ziegler, S.F., Ramsdell, F. & Alderson, M.R. The activation antigen CD69. Stem Cells 12, 456–465 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39

    Smith-Garvin, J.E., Koretzky, G.A. & Jordan, M.S. T cell activation. Annu. Rev. Immunol. 27, 591–619 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40

    Zhang, H. et al. Bcl-2 family proteins are essential for platelet survival. Cell Death Differ. 14, 943–951 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41

    Goreshnik, I. & Maly, D.J. A small molecule-regulated guanine nucleotide exchange factor. J. Am. Chem. Soc. 132, 938–940 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42

    Gao, J., Sidhu, S.S. & Wells, J.A. Two-state selection of conformation-specific antibodies. Proc. Natl. Acad. Sci. USA 106, 3071–3076 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43

    Rizk, S.S. et al. Allosteric control of ligand-binding affinity using engineered conformation-specific effector proteins. Nat. Struct. Mol. Biol. 18, 437–442 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44

    Staus, D.P. et al. Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation. Nature 535, 448–452 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45

    Thomsen, N.D., Koerber, J.T. & Wells, J.A. Structural snapshots reveal distinct mechanisms of procaspase-3 and -7 activation. Proc. Natl. Acad. Sci. USA 110, 8477–8482 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46

    Barlow, A.D. et al. Rapamycin toxicity in MIN6 cells and rat and human islets is mediated by the inhibition of mTOR complex 2 (mTORC2). Diabetologia 55, 1355–1365 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47

    Wang, B. et al. Rapamycin inhibiting Jurkat T cells viability through changing mRNA expression of serine/threonine protein phosphatase 2A. Transpl. Immunol. 26, 50–54 (2012).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  48. 48

    Kelly, P.N., Grabow, S., Delbridge, A.R., Adams, J.M. & Strasser, A. Prophylactic treatment with the BH3 mimetic ABT-737 impedes Myc-driven lymphomagenesis in mice. Cell Death Differ. 20, 57–63 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49

    Fiedler, M. & Skerra, A. in Handbook of Therapeutic Antibodies. Vol. 1. (eds. Dubel, S. & Reichert, J.M.) 435–474 (Wiley-VCH Verlag GmbH & Co. KgaA, 2014).

  50. 50

    Kong, H.Y. & Byun, J. Nucleic acid aptamers: new methods for selection, stabilization, and application in biomedical science. Biomol. Ther. (Seoul) 21, 423–434 (2013).

    Article  Google Scholar 

  51. 51

    Seiler, C.Y. et al. DNASU plasmid and PSI:Biology-Materials repositories: resources to accelerate biological research. Nucleic Acids Res. 42, D1253–D1260 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52

    Rajan, S. et al. Structural transition in Bcl-xL and its potential association with mitochondrial calcium ion transport. Sci. Rep. 5, 10609 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53

    ORFeome Collaboration. The ORFeome Collaboration: a genome-scale human ORF-clone resource. Nat. Methods 13, 191–192 (2016).

  54. 54

    Gilbert, L.A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We thank S. Sidhu (University of Toronto) for providing the phage-displayed Fab library. We thank A. Weiss (UCSF) and T. Kadlecek (UCSF) for kindly providing the NFAT-dependent GFP reporter Jurkat cell line. Funding was provided by R01 grants from the NIH (CA191018 and GM097316) and a P41 grant from the NCI (P41 CA196276). Z.B.H. was supported by a postdoctoral fellowship from the Helen Hay Whitney Foundation and HHMI, as well as a Pathway to Independence Award from the NIH-NCI (K99CA203002). A.J.M. was supported by a predoctoral fellowship from the NSF GRFP. D.P.N. is the Connie and Bob Lurie Fellow of the Damon Runyon Cancer Research Foundation (DRG-2204-14).

Author information

Affiliations

Authors

Contributions

Z.B.H. and A.J.M. performed all experiments except those explicitly stated. D.P.N. designed experiments, prepared constructs, prepared cell lines, and performed experiments related to small-molecule control of CRISPRa-mediated gene expression. Z.B.H., A.J.M., and J.A.W. designed the research and analyzed the data. Z.B.H., A.J.M., and J.A.W. wrote the paper. All authors edited the paper.

Corresponding author

Correspondence to James A Wells.

Ethics declarations

Competing interests

Z.B.H., A.J.M., J.A.W., and the University of California, San Francisco have filed a patent application related to the technology described in this manuscript. The value of this patent application may be affected by publication of this manuscript.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–3, Supplementary Figures 1–15 (PDF 5687 kb)

Life Sciences Reporting Summary (PDF 190 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hill, Z., Martinko, A., Nguyen, D. et al. Human antibody-based chemically induced dimerizers for cell therapeutic applications. Nat Chem Biol 14, 112–117 (2018). https://doi.org/10.1038/nchembio.2529

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing