Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discovery and characterization of highly potent and selective allosteric USP7 inhibitors

Abstract

Given the importance of ubiquitin-specific protease 7 (USP7) in oncogenic pathways, identification of USP7 inhibitors has attracted considerable interest. Despite substantial efforts, however, the development of validated deubiquitinase (DUB) inhibitors that exhibit drug-like properties and a well-defined mechanism of action has proven particularly challenging. In this article, we describe the identification, optimization and detailed characterization of highly potent (IC50 < 10 nM), selective USP7 inhibitors together with their less active, enantiomeric counterparts. We also disclose, for the first time, co-crystal structures of a human DUB enzyme complexed with small-molecule inhibitors, which reveal a previously undisclosed allosteric binding site. Finally, we report the identification of cancer cell lines hypersensitive to USP7 inhibition (EC50 < 30 nM) and demonstrate equal or superior activity in these cell models compared to clinically relevant MDM2 antagonists. Overall, these findings demonstrate the tractability and druggability of DUBs, and provide important tools for additional target validation studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-resolution X-ray co-crystal structure of USP7 in complex with 2 (PDB ID 5N9R).
Figure 2: High-resolution X-ray crystal structure of USP7 in complex with 5 (PDB ID 5N9T).
Figure 3: Selectivity profile of 4 against a panel of DUBs.
Figure 4: Target engagement and selectivity profile of 4 against selected USPs in cells.
Figure 5: Treatment of cells with 4 caused nongenotoxic stabilization of p53 and decreased levels of MDM2.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Yau, R. & Rape, M. The increasing complexity of the ubiquitin code. Nat. Cell Biol. 18, 579–586 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Huang, X. & Dixit, V.M. Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res. 26, 484–498 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zheng, Q. et al. Dysregulation of ubiquitin-proteasome system in neurodegenerative diseases. Front. Aging Neurosci. 8, 303 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Zhang, W. & Sidhu, S.S. Development of inhibitors in the ubiquitination cascade. FEBS Lett. 588, 356–367 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Merin, N.M. & Kelly, K.R. Clinical use of proteasome inhibitors in the treatment of multiple myeloma. Pharmaceuticals (Basel) 8, 1–20 (2014).

    Article  CAS  Google Scholar 

  6. Sheridan, C. Drug makers target ubiquitin proteasome pathway anew. Nat. Biotechnol. 33, 1115–1117 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Abdul Rehman, S.A. et al. MINDY-1 is a Member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes. Mol. Cell 63, 146–155 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Clague, M.J. et al. Deubiquitylases from genes to organism. Physiol. Rev. 93, 1289–1315 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Ye, Y., Scheel, H., Hofmann, K. & Komander, D. Dissection of USP catalytic domains reveals five common insertion points. Mol. Biosyst. 5, 1797–1808 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Pal, A., Young, M.A. & Donato, N.J. Emerging potential of therapeutic targeting of ubiquitin-specific proteases in the treatment of cancer. Cancer Res. 74, 4955–4966 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Heideker, J. & Wertz, I.E. DUBs, the regulation of cell identity and disease. Biochem. J. 465, 1–26 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. D'Arcy, P., Wang, X. & Linder, S. Deubiquitinase inhibition as a cancer therapeutic strategy. Pharmacol. Ther. 147, 32–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Ratia, K. et al. A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication. Proc. Natl. Acad. Sci. USA 105, 16119–16124 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nicholson, B. & Suresh Kumar, K.G. The multifaceted roles of USP7: new therapeutic opportunities. Cell Biochem. Biophys. 60, 61–68 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Cummins, J.M. et al. Tumour suppression: disruption of HAUSP gene stabilizes p53. Nature 428, 1, 486 10.1038/nature02501 (2004).

    Article  PubMed  Google Scholar 

  16. Kon, N. et al. Inactivation of HAUSP in vivo modulates p53 function. Oncogene 29, 1270–1279 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Tavana, O. & Gu, W. Modulation of the p53/MDM2 interplay by HAUSP inhibitors. J. Mol. Cell Biol. 9, 45–52 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Song, M.S. et al. The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature 455, 813–817 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu, H.T. et al. K63-polyubiquitinated HAUSP deubiquitinates HIF-1α and dictates H3K56 acetylation promoting hypoxia-induced tumour progression. Nat. Commun. 7, 13644 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tavana, O. et al. HAUSP deubiquitinates and stabilizes N-Myc in neuroblastoma. Nat. Med. 22, 1180–1186 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, Q. et al. Stabilization of histone demethylase PHF8 by USP7 promotes breast carcinogenesis. J. Clin. Invest. 126, 2205–2220 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhou, Z. et al. Deubiquitination of Ci/Gli by Usp7/HAUSP Regulates Hedgehog Signaling. Dev. Cell 34, 58–72 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van der Horst, A. et al. FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat. Cell Biol. 8, 1064–1073 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. van Loosdregt, J. et al. Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity 39, 259–271 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hall, J.A., Tabata, M., Rodgers, J.T. & Puigserver, P. USP7 attenuates hepatic gluconeogenesis through modulation of FoxO1 gene promoter occupancy. Mol. Endocrinol. 28, 912–924 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Jäger, W. et al. The ubiquitin-specific protease USP7 modulates the replication of Kaposi's sarcoma-associated herpesvirus latent episomal DNA. J. Virol. 86, 6745–6757 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Meredith, M., Orr, A. & Everett, R. Herpes simplex virus type 1 immediate-early protein Vmw110 binds strongly and specifically to a 135-kDa cellular protein. Virology 200, 457–469 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Holowaty, M.N. et al. Protein profiling with Epstein-Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7. J. Biol. Chem. 278, 29987–29994 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Kemp, M. Recent Advances in the Discovery of Deubiquitinating Enzyme Inhibitors. Prog. Med. Chem. 55, 149–192 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chen, C. et al. Synthesis and biological evaluation of thiazole derivatives as novel USP7 inhibitors. Bioorg. Med. Chem. Lett. 27, 845–849 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Weinstock, J. et al. Selective dual Inhibitors of the cancer-related deubiquitylating proteases USP7 and USP47. ACS Med. Chem. Lett. 3, 789–792 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Reverdy, C. et al. Discovery of specific inhibitors of human USP7/HAUSP deubiquitinating enzyme. Chem. Biol. 19, 467–477 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Colland, F. et al. Small-molecule inhibitor of USP7/HAUSP ubiquitin protease stabilizes and activates p53 in cells. Mol. Cancer Ther. 8, 2286–2295 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Altun, M. et al. Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. Chem. Biol. 18, 1401–1412 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Tian, X. et al. Characterization of selective ubiquitin and ubiquitin-like protease inhibitors using a fluorescence-based multiplex assay format. Assay Drug Dev. Technol. 9, 165–173 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu, J. et al. Chemical approaches to intervening in ubiquitin specific protease 7 (USP7) function for oncology and immune oncology therapies. J. Med. Chem. http://dx.doi.org/10.1021/acs.jmedchem.7b00498 (2017).

  37. Ndubaku, C. & Tsui, V. Inhibiting the deubiquitinating enzymes (DUBs). J. Med. Chem. 58, 1581–1595 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Lee, J.G., Baek, K., Soetandyo, N. & Ye, Y. Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells. Nat. Commun. 4, 1568 (2013).

    Article  PubMed  CAS  Google Scholar 

  39. Wrigley, J.D. et al. Enzymatic characterisation of USP7 deubiquitinating activity and inhibition. Cell Biochem. Biophys. 60, 99–111 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Winter, A. et al. Biophysical and computational fragment-based approaches to targeting protein-protein interactions: applications in structure-guided drug discovery. Q. Rev. Biophys. 45, 383–426 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Kessler, B.M. Selective and reversible inhibitors of ubiquitin-specific protease 7: a patent evaluation (WO2013030218). Expert Opin. Ther. Pat. 24, 597–602 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Lor, L.A. et al. A simple assay for detection of small-molecule redox activity. J. Biomol. Screen. 12, 881–890 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Ritorto, M.S. et al. Screening of DUB activity and specificity by MALDI-TOF mass spectrometry. Nat. Commun. 5, 4763 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Tovar, C. et al. MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models. Cancer Res. 73, 2587–2597 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, S. et al. SAR405838: an optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression. Cancer Res. 74, 5855–5865 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cummins, J.M. & Vogelstein, B. HAUSP is required for p53 destabilization. Cell Cycle 3, 689–692 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Kategaya, L. et al. USP7 small-molecule inhibitors interfere with ubiquitin binding. Nature 550, 534–538 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Turnbull, A.P. et al. Molecular basis of USP7 inhibition by selective small-molecule inhibitors. Nature 550, 481–486 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lamberto, I. et al. Structure-guided development of a potent and selective non-covalent active-site inhibitor of USP7. Cell Chem. Biol. http://dx.doi.org/10.1016/j.chembiol.2017.09.003 (2017).

  50. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bochevarov, A.D. et al. Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences. Int. J. Quantum Chem. 113, 2110–2142 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank collaborators at Ubiquigent (Dundee, UK), Boston Biochem (Boston, US) and Beactica (Uppsala, Sweden) for their contributions, as well as Crelux GmbH (Martinsried, Germany) for solving the crystal structures and C. Scott and J. Burrows (Queen's University, Belfast) for helpful discussions and for providing plasmids, respectively. This study was supported by the Almac Group, the European Regional Development Fund and Invest Northern Ireland (Grant RD1010668).

Author information

Authors and Affiliations

Authors

Contributions

T.H. conceived the concept and directed the research. C.R.O'D. and G.G. helped develop the concept and designed and supervised medicinal chemistry and biology experiments. M.D.H., E.A., J.F. and H.M. carried out the design, synthesis and characterization of compounds. A.D. performed surface plasmon resonance experiments. C.H., K.M., E.O., E.C., A.D. and N.P. carried out compound screening, target validation and biochemical and cellular profiling studies. O.B. carried out computational modeling and structural analysis. T.H. and G.G. wrote the manuscript with input from other authors.

Corresponding author

Correspondence to Timothy Harrison.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–3 and Supplementary Figures 1–16 (PDF 3747 kb)

Life Sciences Reporting Summary (PDF 129 kb)

Supplementary Note

Synthetic procedures (PDF 877 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavory, G., O'Dowd, C., Helm, M. et al. Discovery and characterization of highly potent and selective allosteric USP7 inhibitors. Nat Chem Biol 14, 118–125 (2018). https://doi.org/10.1038/nchembio.2528

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2528

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer