Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure-inspired design of β-arrestin-biased ligands for aminergic GPCRs

Abstract

Development of biased ligands targeting G protein-coupled receptors (GPCRs) is a promising approach for current drug discovery. Although structure-based drug design of biased agonists remains challenging even with an abundance of GPCR crystal structures, we present an approach for translating GPCR structural data into β-arrestin-biased ligands for aminergic GPCRs. We identified specific amino acid–ligand contacts at transmembrane helix 5 (TM5) and extracellular loop 2 (EL2) responsible for Gi/o and β-arrestin signaling, respectively, and targeted those residues to develop biased ligands. For these ligands, we found that bias is conserved at other aminergic GPCRs that retain similar residues at TM5 and EL2. Our approach provides a template for generating arrestin-biased ligands by modifying predicted ligand interactions that block TM5 interactions and promote EL2 interactions. This strategy may facilitate the structure-guided design of arrestin-biased ligands at other GPCRs, including polypharmacological biased ligands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure-inspired design of indole-aripiprazole hybrid ligands.
Figure 2: Indole-aripiprazole hybrid D2R SFSR.
Figure 3: D2R MD simulations predict EL2 engagement for arrestin bias.
Figure 4: D2 TM5 and EL2 mutants confirm arrestin-bias binding pose.
Figure 5: MD-assisted rational design of arrestin-biased compounds.
Figure 6: Prediction and confirmation of polypharmacological arrestin bias.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Overington, J.P., Al-Lazikani, B. & Hopkins, A.L. How many drug targets are there? Nat. Rev. Drug Discov. 5, 993–996 (2006).

    CAS  PubMed  Google Scholar 

  2. Rask-Andersen, M., Almén, M.S. & Schiöth, H.B. Trends in the exploitation of novel drug targets. Nat. Rev. Drug Discov. 10, 579–590 (2011).

    CAS  PubMed  Google Scholar 

  3. Wacker, D., Stevens, R.C. & Roth, B.L. How ligands illuminate GPCR molecular pharmacology. Cell 170, 414–427 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Urban, J.D. et al. Functional selectivity and classical concepts of quantitative pharmacology. J. Pharmacol. Exp. Ther. 320, 1–13 (2007).

    CAS  PubMed  Google Scholar 

  5. DeWire, S.M., Ahn, S., Lefkowitz, R.J. & Shenoy, S.K. β-arrestins and cell signaling. Annu. Rev. Physiol. 69, 483–510 (2007).

    CAS  PubMed  Google Scholar 

  6. Shukla, A.K., Xiao, K. & Lefkowitz, R.J. Emerging paradigms of β-arrestin-dependent seven transmembrane receptor signaling. Trends Biochem. Sci. 36, 457–469 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Violin, J.D., Crombie, A.L., Soergel, D.G. & Lark, M.W. Biased ligands at G-protein-coupled receptors: promise and progress. Trends Pharmacol. Sci. 35, 308–316 (2014).

    CAS  PubMed  Google Scholar 

  8. Allen, J.A. et al. Discovery of β-arrestin-biased dopamine D2 ligands for probing signal transduction pathways essential for antipsychotic efficacy. Proc. Natl. Acad. Sci. USA 108, 18488–18493 (2011).

    CAS  PubMed  Google Scholar 

  9. Soergel, D.G. et al. Biased agonism of the μ-opioid receptor by TRV130 increases analgesia and reduces on-target adverse effects versus morphine: A randomized, double-blind, placebo-controlled, crossover study in healthy volunteers. Pain 155, 1829–1835 (2014).

    CAS  PubMed  Google Scholar 

  10. Violin, J.D. et al. Selectively engaging β-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. J. Pharmacol. Exp. Ther. 335, 572–579 (2010).

    CAS  PubMed  Google Scholar 

  11. Urs, N.M. et al. Targeting β-arrestin2 in the treatment of L-DOPA-induced dyskinesia in Parkinson's disease. Proc. Natl. Acad. Sci. USA 112, E2517–E2526 (2015).

    CAS  PubMed  Google Scholar 

  12. Charfi, I., Audet, N., Bagheri Tudashki, H. & Pineyro, G. Identifying ligand-specific signalling within biased responses: focus on δ opioid receptor ligands. Br. J. Pharmacol. 172, 435–448 (2015).

    CAS  PubMed  Google Scholar 

  13. Manglik, A. et al. Structure-based discovery of opioid analgesics with reduced side effects. Nature 537, 185–190 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. DeWire, S.M. et al. A G protein-biased ligand at the μ-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. J. Pharmacol. Exp. Ther. 344, 708–717 (2013).

    CAS  PubMed  Google Scholar 

  15. Gesty-Palmer, D. et al. β-arrestin-selective G protein-coupled receptor agonists engender unique biological efficacy in vivo. Mol. Endocrinol. 27, 296–314 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Masri, B. et al. Antagonism of dopamine D2 receptor/β-arrestin 2 interaction is a common property of clinically effective antipsychotics. Proc. Natl. Acad. Sci. USA 105, 13656–13661 (2008).

    CAS  PubMed  Google Scholar 

  17. Tchernychev, B. et al. Discovery of a CXCR4 agonist pepducin that mobilizes bone marrow hematopoietic cells. Proc. Natl. Acad. Sci. USA 107, 22255–22259 (2010).

    CAS  PubMed  Google Scholar 

  18. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chien, E.Y. et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330, 1091–1095 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rasmussen, S.G. et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477, 549–555 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ring, A.M. et al. Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody. Nature 502, 575–579 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wacker, D. et al. Structural features for functional selectivity at serotonin receptors. Science 340, 615–619 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, C. et al. Structural basis for molecular recognition at serotonin receptors. Science 340, 610–614 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kapur, S. & Remington, G. Atypical antipsychotics: new directions and new challenges in the treatment of schizophrenia. Annu. Rev. Med. 52, 503–517 (2001).

    CAS  PubMed  Google Scholar 

  25. Wadenberg, M.L., Soliman, A., VanderSpek, S.C. & Kapur, S. Dopamine D(2) receptor occupancy is a common mechanism underlying animal models of antipsychotics and their clinical effects. Neuropsychopharmacology 25, 633–641 (2001).

    CAS  PubMed  Google Scholar 

  26. Shapiro, D.A. et al. Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 28, 1400–1411 (2003).

    CAS  PubMed  Google Scholar 

  27. Chen, X. et al. Discovery of G protein-biased D2 dopamine receptor partial agonists. J. Med. Chem. 59, 10601–10618 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Park, S.M. et al. Effects of β-arrestin-biased dopamine D2 receptor ligands on schizophrenia-like behavior in hypoglutamatergic mice. Neuropsychopharmacology 41, 704–715 (2016).

    CAS  PubMed  Google Scholar 

  29. Ambrosio, C., Molinari, P., Cotecchia, S. & Costa, T. Catechol-binding serines of β2-adrenergic receptors control the equilibrium between active and inactive receptor states. Mol. Pharmacol. 57, 198–210 (2000).

    CAS  PubMed  Google Scholar 

  30. Isogai, S. et al. Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor. Nature 530, 237–241 (2016).

    CAS  PubMed  Google Scholar 

  31. Warne, T. et al. The structural basis for agonist and partial agonist action on a β1-adrenergic receptor. Nature 469, 241–244 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Neve, K.A. & Wiens, B.L. Four ways of being an agonist: multiple sequence determinants of efficacy at D2 dopamine receptors. Biochem. Soc. Trans. 23, 112–116 (1995).

    CAS  PubMed  Google Scholar 

  33. Wiens, B.L., Nelson, C.S. & Neve, K.A. Contribution of serine residues to constitutive and agonist-induced signaling via the D2S dopamine receptor: evidence for multiple, agonist-specific active conformations. Mol. Pharmacol. 54, 435–444 (1998).

    CAS  PubMed  Google Scholar 

  34. Fowler, J.C., Bhattacharya, S., Urban, J.D., Vaidehi, N. & Mailman, R.B. Receptor conformations involved in dopamine D(2L) receptor functional selectivity induced by selected transmembrane-5 serine mutations. Mol. Pharmacol. 81, 820–831 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wacker, D. et al. Crystal structure of an LSD-bound human serotonin receptor. Cell 168, 377–389.e12 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, X. et al. Structure-functional selectivity relationship studies of β-arrestin-biased dopamine D2 receptor agonists. J. Med. Chem. 55, 7141–7153 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Christopher, J.A. et al. Biophysical fragment screening of the β1-adrenergic receptor: identification of high affinity arylpiperazine leads using structure-based drug design. J. Med. Chem. 56, 3446–3455 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kling, R.C., Tschammer, N., Lanig, H., Clark, T. & Gmeiner, P. Active-state model of a dopamine D2 receptor-Gαi complex stabilized by aripiprazole-type partial agonists. PLoS One 9, e100069 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. Luedtke, R.R. et al. Comparison of the binding and functional properties of two structurally different D2 dopamine receptor subtype selective compounds. ACS Chem. Neurosci. 3, 1050–1062 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kroeze, W.K. et al. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat. Struct. Mol. Biol. 22, 362–369 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Klein Herenbrink, C. et al. The role of kinetic context in apparent biased agonism at GPCRs. Nat. Commun. 7, 10842 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ahuja, S. et al. Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation. Nat. Struct. Mol. Biol. 16, 168–175 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kuwayama, S., Imai, H., Hirano, T., Terakita, A. & Shichida, Y. Conserved proline residue at position 189 in cone visual pigments as a determinant of molecular properties different from rhodopsins. Biochemistry 41, 15245–15252 (2002).

    CAS  PubMed  Google Scholar 

  44. Warne, T. & Tate, C.G. The importance of interactions with helix 5 in determining the efficacy of β-adrenoceptor ligands. Biochem. Soc. Trans. 41, 159–165 (2013).

    CAS  PubMed  Google Scholar 

  45. Deupi, X. & Standfuss, J. Structural insights into agonist-induced activation of G-protein-coupled receptors. Curr. Opin. Struct. Biol. 21, 541–551 (2011).

    CAS  PubMed  Google Scholar 

  46. Roth, B.L., Sheffler, D.J. & Kroeze, W.K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat. Rev. Drug Discov. 3, 353–359 (2004).

    CAS  PubMed  Google Scholar 

  47. Besnard, J. et al. Automated design of ligands to polypharmacological profiles. Nature 492, 215–220 (2012).

    CAS  PubMed  Google Scholar 

  48. Huang, W. et al. Structural insights into μ-opioid receptor activation. Nature 524, 315–321 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kobilka, B. & Schertler, G.F. New G-protein-coupled receptor crystal structures: insights and limitations. Trends Pharmacol. Sci. 29, 79–83 (2008).

    CAS  PubMed  Google Scholar 

  50. Motulsky, H.J. & Mahan, L.C. The kinetics of competitive radioligand binding predicted by the law of mass action. Mol. Pharmacol. 25, 1–9 (1984).

    CAS  PubMed  Google Scholar 

  51. Kenakin, T., et al. A simple method for quantifying functional selectivity and agonist bias. ACS Chem. Neurosci. 3, 193–203 (2012).

    CAS  PubMed  Google Scholar 

  52. Weiss, D.R. et al. Conformation guides molecular efficacy in docking screens of activated β-2 adrenergic G protein coupled receptor. ACS Chem. Biol. 8, 1018–1026 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Coleman, R.G., Sterling, T. & Weiss, D.R. SAMPL4 & DOCK3.7: lessons for automated docking procedures. J. Comput. Aided Mol. Des. 28, 201–209 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lomize, M.A., Lomize, A.L., Pogozheva, I.D. & Mosberg, H.I. OPM: orientations of proteins in membranes database. Bioinformatics 22, 623–625 (2006).

    CAS  PubMed  Google Scholar 

  55. Zhang, L. & Hermans, J. Hydrophilicity of cavities in proteins. Proteins 24, 433–438 (1996).

    CAS  PubMed  Google Scholar 

  56. Best, R.B. et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ(1) and χ(2) dihedral angles. J. Chem. Theory Comput. 8, 3257–3273 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Vanommeslaeghe, K. & MacKerell, A.D. Jr. Automation of the CHARMM general force field (CGenFF) I: bond perception and atom typing. J. Chem. Inf. Model. 52, 3144–3154 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Betz, R.M. & Walker, R.C. Paramfit: automated optimization of force field parameters for molecular dynamics simulations. J. Comput. Chem. 36, 79–87 (2015).

    CAS  PubMed  Google Scholar 

  59. Salomon-Ferrer, R., Götz, A.W., Poole, D., Le Grand, S. & Walker, R.C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh ewald. J. Chem. Theory Comput. 9, 3878–3888 (2013).

    CAS  PubMed  Google Scholar 

  60. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    CAS  PubMed  Google Scholar 

  61. Roe, D.R. & Cheatham, T.E. III. PTRAJ and CPPTRAJ: software for processing and analysis of molecular synamics trajectory data. J. Chem. Theory Comput. 9, 3084–3095 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Hollingsworth for assistance with simulation analysis and A.J. Venkatakrishnan for assistance with simulation setup. We thank R. Axel at Columbia University for the HTLA cells and M. Bouvier at Université de Montréal for BRET constructs. This work was supported by the National Institutes of Health (NIH) grant U19MH082441 (to B.L.R. and J.J.), R01MH112205 (to B.L.R.), R01NS100930 (to J.J.), the National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP; to B.L.R.), the Michael Hooker Chair for Protein Therapeutics and Translational Proteomics (to B.L.R.), the American Cancer Society postdoctoral fellowship PF-14-021-01-CDD (to K.V.B.), by NIH grant GM59957 (to B.K.S.), by Pfizer, Inc. (R.O.D.), by a Terman Faculty Fellowship (to R.O.D.), and by a National Science Foundation Graduate Research Fellowship (to R.M.B.).

Author information

Authors and Affiliations

Authors

Contributions

J.D.M. designed experiments, performed mutagenesis, ligand-binding and signaling studies, analyzed the data, and wrote the manuscript. K.V.B. designed and synthesized all ligands, performed analytical chemical analysis and wrote the manuscript. B.K. performed and analyzed MD simulations, used the results to design ligands, and wrote the manuscript. K.R. assisted with mutagenesis and signaling studies. B.K., J.K., and B.L.K. built the D2 homology model. J.K. performed the docking experiments and edited the manuscript. R.M.B. determined ligand parameters and performed preliminary MD simulations. B.K.S. supervised the docking experiments and edited the manuscript. R.O.D. supervised the MD simulation studies and helped prepare the manuscript. J.J. supervised ligand synthesis, designed experiments and edited the manuscript. B.L.R. designed the experiments, was responsible for the overall project strategy and management and prepared the manuscript.

Corresponding authors

Correspondence to Ron O Dror, Jian Jin or Bryan L Roth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–6 and Supplementary Figures 1–10 (PDF 1763 kb)

Reporting Summary (PDF 130 kb)

Supplementary Note 1

Synthetic chemistry procedures (PDF 504 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCorvy, J., Butler, K., Kelly, B. et al. Structure-inspired design of β-arrestin-biased ligands for aminergic GPCRs. Nat Chem Biol 14, 126–134 (2018). https://doi.org/10.1038/nchembio.2527

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2527

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing