Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineering peptide ligase specificity by proteomic identification of ligation sites

Abstract

Enzyme-catalyzed peptide ligation is a powerful tool for site-specific protein bioconjugation, but stringent enzyme-substrate specificity limits its utility. We developed an approach for comprehensively characterizing peptide ligase specificity for N termini using proteome-derived peptide libraries. We used this strategy to characterize the ligation efficiency for >25,000 enzyme-substrate pairs in the context of the engineered peptide ligase subtiligase and identified a family of 72 mutant subtiligases with activity toward N-terminal sequences that were previously recalcitrant to modification. We applied these mutants individually for site-specific bioconjugation of purified proteins, including antibodies, and in algorithmically selected combinations for sequencing of the cellular N terminome with reduced sequence bias. We also developed a web application to enable algorithmic selection of the most efficient subtiligase variant(s) for bioconjugation to user-defined sequences. Our methods provide a new toolbox of enzymes for site-specific protein modification and a general approach for rapidly defining and engineering peptide ligase specificity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PILS applied to comprehensive characterization of subtiligase prime-side specificity.
Figure 2: Defining and re-engineering subtiligase specificity for P1′ and P2′ residues.
Figure 3: Scope of subtiligase-catalyzed N-terminal modification of folded proteins.
Figure 4: Modular strategy for subtiligase-catalyzed protein bioconjugation.
Figure 5: Algorithmically selected subtiligase cocktails for cellular N terminomics.

Similar content being viewed by others

References

  1. Liu, Y., Patricelli, M.P. & Cravatt, B.F. Activity-based protein profiling: the serine hydrolases. Proc. Natl. Acad. Sci. USA 96, 14694–14699 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Banghart, M., Borges, K., Isacoff, E., Trauner, D. & Kramer, R.H. Light-activated ion channels for remote control of neuronal firing. Nat. Neurosci. 7, 1381–1386 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Erlanson, D.A., Wells, J.A. & Braisted, A.C. Tethering: fragment-based drug discovery. Annu. Rev. Biophys. Biomol. Struct. 33, 199–223 (2004).

    CAS  PubMed  Google Scholar 

  5. Ostrem, J.M., Peters, U., Sos, M.L., Wells, J.A. & Shokat, K.M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Serafimova, I.M. et al. Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles. Nat. Chem. Biol. 8, 471–476 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Junutula, J.R. et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 26, 925–932 (2008).

    CAS  PubMed  Google Scholar 

  8. Lyon, R.P. et al. Self-hydrolyzing maleimides improve the stability and pharmacological properties of antibody-drug conjugates. Nat. Biotechnol. 32, 1059–1062 (2014).

    CAS  PubMed  Google Scholar 

  9. Pleiner, T. et al. Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation. eLife 4, e11349 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. Lin, S. et al. Redox-based reagents for chemoselective methionine bioconjugation. Science 355, 597–602 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Guimaraes, C.P. et al. Site-specific C-terminal and internal loop labeling of proteins using sortase-mediated reactions. Nat. Protoc. 8, 1787–1799 (2013).

    PubMed  PubMed Central  Google Scholar 

  12. Fernández-Suárez, M. et al. Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes. Nat. Biotechnol. 25, 1483–1487 (2007).

    PubMed  PubMed Central  Google Scholar 

  13. Wu, P. et al. Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag. Proc. Natl. Acad. Sci. USA 106, 3000–3005 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hooker, J.M., Esser-Kahn, A.P. & Francis, M.B. Modification of aniline containing proteins using an oxidative coupling strategy. J. Am. Chem. Soc. 128, 15558–15559 (2006).

    CAS  PubMed  Google Scholar 

  15. Lang, K. et al. Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. Nat. Chem. 4, 298–304 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Dawson, P.E., Muir, T.W., Clark-Lewis, I. & Kent, S.B. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    CAS  PubMed  Google Scholar 

  17. Muir, T.W., Sondhi, D. & Cole, P.A. Expressed protein ligation: a general method for protein engineering. Proc. Natl. Acad. Sci. USA 95, 6705–6710 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Henager, S.H. et al. Enzyme-catalyzed expressed protein ligation. Nat. Methods 13, 925–927 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jacob, E. & Unger, R. A tale of two tails: why are terminal residues of proteins exposed? Bioinformatics 23, e225–e230 (2007).

    CAS  PubMed  Google Scholar 

  20. Rosen, C.B. & Francis, M.B. Targeting the N terminus for site-selective protein modification. Nat. Chem. Biol. 13, 697–705 (2017).

    CAS  PubMed  Google Scholar 

  21. MacDonald, J.I., Munch, H.K., Moore, T. & Francis, M.B. One-step site-specific modification of native proteins with 2-pyridinecarboxyaldehydes. Nat. Chem. Biol. 11, 326–331 (2015).

    CAS  PubMed  Google Scholar 

  22. Nguyen, G.K.T. et al. Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis. Nat. Chem. Biol. 10, 732–738 (2014).

    CAS  PubMed  Google Scholar 

  23. Abrahmsén, L. et al. Engineering subtilisin and its substrates for efficient ligation of peptide bonds in aqueous solution. Biochemistry 30, 4151–4159 (1991).

    PubMed  Google Scholar 

  24. Frankel, B.A., Kruger, R.G., Robinson, D.E., Kelleher, N.L. & McCafferty, D.G. Staphylococcus aureus sortase transpeptidase SrtA: insight into the kinetic mechanism and evidence for a reverse protonation catalytic mechanism. Biochemistry 44, 11188–11200 (2005).

    CAS  PubMed  Google Scholar 

  25. Schechter, I. & Berger, A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 27, 497–502 (1967).

    Google Scholar 

  26. Schilling, O. & Overall, C.M. Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites. Nat. Biotechnol. 26, 685–694 (2008).

    CAS  PubMed  Google Scholar 

  27. Renicke, C., Spadaccini, R. & Taxis, C. A tobacco etch virus protease with increased substrate tolerance at the P1′ position. PLoS One 8, e67915 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mahrus, S. et al. Global sequencing of proteolytic cleavage sites in apoptosis by specific labeling of protein N termini. Cell 134, 866–876 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Shimbo, K. et al. Quantitative profiling of caspase-cleaved substrates reveals different drug-induced and cell-type patterns in apoptosis. Proc. Natl. Acad. Sci. USA 109, 12432–12437 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chang, T.K., Jackson, D.Y., Burnier, J.P. & Wells, J.A. Subtiligase: a tool for semisynthesis of proteins. Proc. Natl. Acad. Sci. USA 91, 12544–12548 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Schilling, O. & Overall, C.M. Proteomic discovery of protease substrates. Curr. Opin. Chem. Biol. 11, 36–45 (2007).

    CAS  PubMed  Google Scholar 

  32. Wells, J.A., Powers, D.B., Bott, R.R., Graycar, T.P. & Estell, D.A. Designing substrate specificity by protein engineering of electrostatic interactions. Proc. Natl. Acad. Sci. USA 84, 1219–1223 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Estell, D.A. et al. Probing steric and hydrophobic effects on enzyme-substrate interactions by protein engineering. Science 233, 659–663 (1986).

    CAS  PubMed  Google Scholar 

  34. Takeuchi, Y. et al. Molecular recognition at the active site of subtilisin BPN': crystallographic studies using genetically engineered proteinaceous inhibitor SSI (Streptomyces subtilisin inhibitor). Protein Eng. 4, 501–508 (1991).

    CAS  PubMed  Google Scholar 

  35. Hedstrom, L., Szilagyi, L. & Rutter, W.J. Converting trypsin to chymotrypsin: the role of surface loops. Science 255, 1249–1253 (1992).

    CAS  PubMed  Google Scholar 

  36. Estell, D.A., Graycar, T.P. & Wells, J.A. Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. J. Biol. Chem. 260, 6518–6521 (1985).

    CAS  PubMed  Google Scholar 

  37. Nuijens, T. et al. Engineering a diverse ligase toolbox for peptide segment condensation. Adv. Synth. Catal. 358, 4041–4048 (2016).

    CAS  Google Scholar 

  38. Hornsby, M. et al. A high through-put platform for recombinant antibodies to folded proteins. Mol. Cell. Proteomics 14, 2833–2847 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fellouse, F.A. et al. High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries. J. Mol. Biol. 373, 924–940 (2007).

    CAS  PubMed  Google Scholar 

  40. Pan, Y. et al. Determination of equilibrium dissociation constants for recombinant antibodies by high-throughput affinity electrophoresis. Sci. Rep. 6, 39774 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Saxon, E. & Bertozzi, C.R. Cell surface engineering by a modified Staudinger reaction. Science 287, 2007–2010 (2000).

    CAS  PubMed  Google Scholar 

  42. Wiita, A.P., Hsu, G.W., Lu, C.M., Esensten, J.H. & Wells, J.A. Circulating proteolytic signatures of chemotherapy-induced cell death in humans discovered by N-terminal labeling. Proc. Natl. Acad. Sci. USA 111, 7594–7599 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Crawford, E.D. & Wells, J.A. Caspase substrates and cellular remodeling. Annu. Rev. Biochem. 80, 1055–1087 (2011).

    CAS  PubMed  Google Scholar 

  44. Xiao, Q., Zhang, F., Nacev, B.A., Liu, J.O. & Pei, D. Protein N-terminal processing: substrate specificity of Escherichia coli and human methionine aminopeptidases. Biochemistry 49, 5588–5599 (2010).

    CAS  PubMed  Google Scholar 

  45. Voss, M., Schröder, B. & Fluhrer, R. Mechanism, specificity, and physiology of signal peptide peptidase (SPP) and SPP-like proteases. Biochim. Biophys. Acta 1828, 2828–2839 (2013).

    CAS  PubMed  Google Scholar 

  46. The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169 (2017).

  47. Gibson, D.G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    CAS  PubMed  Google Scholar 

  48. Wells, J.A., Ferrari, E., Henner, D.J., Estell, D.A. & Chen, E.Y. Cloning, sequencing, and secretion of Bacillus amyloliquefaciens subtilisin in Bacillus subtilis. Nucleic Acids Res. 11, 7911–7925 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zheng, L., Baumann, U. & Reymond, J.-L. An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res. 32, e115 (2004).

    PubMed  PubMed Central  Google Scholar 

  50. Milo, R. & Phillips, R. How big is the “average” protein? in Cell Biology by the Numbers http://book.bionumbers.org/how-big-is-the-average-protein/ (2015).

  51. Giansanti, P., Tsiatsiani, L., Low, T.Y. & Heck, A.J.R. Six alternative proteases for mass spectrometry-based proteomics beyond trypsin. Nat. Protoc. 11, 993–1006 (2016).

    CAS  PubMed  Google Scholar 

  52. Coin, I., Beyermann, M. & Bienert, M. Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat. Protoc. 2, 3247–3256 (2007).

    CAS  PubMed  Google Scholar 

  53. Braisted, A.C., Judice, J.K. & Wells, J.A. Synthesis of proteins by subtiligase. Methods Enzymol. 289, 298–313 (1997).

    CAS  PubMed  Google Scholar 

  54. Wiita, A.P., Seaman, J.E. & Wells, J.A. Global analysis of cellular proteolysis by selective enzymatic labeling of protein N-termini. Methods Enzymol. 544, 327–358 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Reverter, D. & Lima, C.D. Preparation of SUMO proteases and kinetic analysis using endogenous substrates. Methods Mol. Biol. 497, 225–239 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Coyle, Z. Hill, M. Hornsby, H. Huang, O. Julien, P. Lee, D. Sashital, L. Pack, A. Stewart, H. Tran, K. Wypysniak and members of the Wells laboratory for helpful discussions. We thank P. Lee and M. Hornsby (University of California, San Francisco) for the αGFP rAb expression vector, S. Pollock (University of California, San Francisco) for the HEK-293T-GFP cell line, and H. Tran (University of California, San Francisco) for the subtiligase E. coli expression vector. This work was supported by NIH grant 5R01GM081051-09 and the Harry and Dianna Hind Professorship in Pharmaceutical Sciences (to J.A.W.). A.M.W. is a Merck Fellow of the Helen Hay Whitney Foundation (F-1112) and holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund (1017065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A Wells.

Ethics declarations

Competing interests

A.M.W., J.A.W. and the Regents of the University of California have filed a patent application (US Provisional Patent Application No. 62/398,898) related to engineered subtiligase variants.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–8 and Supplementary Figures 1–16 (PDF 4219 kb)

Life Sciences Reporting Summary (PDF 129 kb)

Supplementary Data Sets

Supplementary Data Sets 1–78 (ZIP 53900 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weeks, A., Wells, J. Engineering peptide ligase specificity by proteomic identification of ligation sites. Nat Chem Biol 14, 50–57 (2018). https://doi.org/10.1038/nchembio.2521

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2521

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research