Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of Delta-induced Notch signaling using fucose analogs

Abstract

Notch is a cell-surface receptor that controls cell-fate decisions and is regulated by O-glycans attached to epidermal growth factor-like (EGF) repeats in its extracellular domain. Protein O-fucosyltransferase 1 (Pofut1) modifies EGF repeats with O-fucose and is essential for Notch signaling. Constitutive activation of Notch signaling has been associated with a variety of human malignancies. Therefore, tools that inhibit Notch activity are being developed as cancer therapeutics. To this end, we screened L-fucose analogs for their effects on Notch signaling. Two analogs, 6-alkynyl and 6-alkenyl fucose, were substrates of Pofut1 and were incorporated directly into Notch EGF repeats in cells. Both analogs were potent inhibitors of binding to and activation of Notch1 by Notch ligands Dll1 and Dll4, but not by Jag1. Mutagenesis and modeling studies suggest that incorporation of the analogs into EGF8 of Notch1 markedly reduces the ability of Delta ligands to bind and activate Notch1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of fucose analogs on Notch signaling in Zebrafish embryos.
Figure 2: Peracetylated fucose analogs are efficiently incorporated into Notch EGF repeats and elongated by Lfng.
Figure 3: Peracetylated fucose analogs inhibit Dll1- and Dll4- but not Jag1-induced Notch signaling.
Figure 4: Compounds 10 and 11 inhibit Notch–Dll ligand binding.
Figure 5: Incorporation of fucose analogs at EGF8 of Notch1 plays an important role in Dll1- and Dll4-mediated Notch activation.
Figure 6: Fucose analog 10 inhibits the development of T-cell progenitors.

Similar content being viewed by others

References

  1. Artavanis-Tsakonas, S., Rand, M.D. & Lake, R.J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    CAS  PubMed  Google Scholar 

  2. Hori, K., Sen, A. & Artavanis-Tsakonas, S. Notch signaling at a glance. J. Cell Sci. 126, 2135–2140 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kopan, R. & Ilagan, M.X.G. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216–233 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Teodorczyk, M. & Schmidt, M.H. Notching on cancer's door: Notch signaling in brain tumors. Front. Oncol. 4, 341 (2015).

    PubMed  PubMed Central  Google Scholar 

  5. Wu, G., Wilson, G., George, J. & Qiao, L. Modulation of Notch signaling as a therapeutic approach for liver cancer. Curr. Gene Ther. 15, 171–181 (2015).

    PubMed  Google Scholar 

  6. Espinoza, I., Pochampally, R., Xing, F., Watabe, K. & Miele, L. Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition. Onco Targets Ther. 6, 1249–1259 (2013).

    PubMed  PubMed Central  Google Scholar 

  7. Yin, L., Velazquez, O.C. & Liu, Z.-J. Notch signaling: emerging molecular targets for cancer therapy. Biochem. Pharmacol. 80, 690–701 (2010).

    CAS  PubMed  Google Scholar 

  8. Wu, Y. et al. Therapeutic antibody targeting of individual Notch receptors. Nature 464, 1052–1057 (2010).

    CAS  PubMed  Google Scholar 

  9. Sagert, J. et al. Tumor-specific inhibition of jagged-dependent notch signaling using a Probody therapeutic. Mol. Cancer Ther. 12, abstr. C158 (2013).

    Google Scholar 

  10. Tran, I.T. et al. Blockade of individual Notch ligands and receptors controls graft-versus-host disease. J. Clin. Invest. 123, 1590–1604 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lafkas, D. et al. Therapeutic antibodies reveal Notch control of transdifferentiation in the adult lung. Nature 528, 127–131 (2015).

    CAS  PubMed  Google Scholar 

  12. Wharton, K.A., Johansen, K.M., Xu, T. & Artavanis-Tsakonas, S. Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43, 567–581 (1985).

    CAS  PubMed  Google Scholar 

  13. Luca, V.C. et al. Structural biology. Structural basis for Notch1 engagement of Delta-like 4. Science 347, 847–853 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Moloney, D.J. et al. Mammalian Notch1 is modified with two unusual forms of O-linked glycosylation found on epidermal growth factor-like modules. J. Biol. Chem. 275, 9604–9611 (2000).

    CAS  PubMed  Google Scholar 

  15. Matsuura, A. et al. O-linked N-acetylglucosamine is present on the extracellular domain of notch receptors. J. Biol. Chem. 283, 35486–35495 (2008).

    CAS  PubMed  Google Scholar 

  16. Shi, S. & Stanley, P. Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways. Proc. Natl. Acad. Sci. USA 100, 5234–5239 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Moloney, D.J. et al. Fringe is a glycosyltransferase that modifies Notch. Nature 406, 369–375 (2000).

    CAS  PubMed  Google Scholar 

  18. Brückner, K., Perez, L., Clausen, H. & Cohen, S. Glycosyltransferase activity of Fringe modulates Notch-Delta interactions. Nature 406, 411–415 (2000).

    PubMed  Google Scholar 

  19. Rillahan, C.D. et al. Global metabolic inhibitors of sialyl- and fucosyltransferases remodel the glycome. Nat. Chem. Biol. 8, 661–668 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Okeley, N.M. et al. Development of orally active inhibitors of protein and cellular fucosylation. Proc. Natl. Acad. Sci. USA 110, 5404–5409 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sawa, M. et al. Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo. Proc. Natl. Acad. Sci. USA 103, 12371–12376 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Al-Shareffi, E. et al. 6-alkynyl fucose is a bioorthogonal analog for O-fucosylation of epidermal growth factor-like repeats and thrombospondin type-1 repeats by protein O-fucosyltransferases 1 and 2. Glycobiology 23, 188–198 (2013).

    CAS  PubMed  Google Scholar 

  23. Parsons, M.J. et al. Notch-responsive cells initiate the secondary transition in larval zebrafish pancreas. Mech. Dev. 126, 898–912 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ohata, S. et al. Neuroepithelial cells require fucosylated glycans to guide the migration of vagus motor neuron progenitors in the developing zebrafish hindbrain. Development 136, 1653–1663 (2009).

    CAS  PubMed  Google Scholar 

  25. Okajima, T., Xu, A. & Irvine, K.D. Modulation of notch-ligand binding by protein O-fucosyltransferase 1 and fringe. J. Biol. Chem. 278, 42340–42345 (2003).

    CAS  PubMed  Google Scholar 

  26. Herrmann, M., von der Lieth, C.W., Stehling, P., Reutter, W. & Pawlita, M. Consequences of a subtle sialic acid modification on the murine polyomavirus receptor. J. Virol. 71, 5922–5931 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Descheny, L., Gainers, M.E., Walcheck, B. & Dimitroff, C.J. Ameliorating skin-homing receptors on malignant T cells with a fluorosugar analog of N-acetylglucosamine: P-selectin ligand is a more sensitive target than E-selectin ligand. J. Invest. Dermatol. 126, 2065–2073 (2006).

    CAS  PubMed  Google Scholar 

  28. Gloster, T.M. et al. Hijacking a biosynthetic pathway yields a glycosyltransferase inhibitor within cells. Nat. Chem. Biol. 7, 174–181 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hicks, C. et al. Fringe differentially modulates Jagged1 and Delta1 signalling through Notch1 and Notch2. Nat. Cell Biol. 2, 515–520 (2000).

    CAS  PubMed  Google Scholar 

  30. Taylor, P. et al. Fringe-mediated extension of O-linked fucose in the ligand-binding region of Notch1 increases binding to mammalian Notch ligands. Proc. Natl. Acad. Sci. USA 111, 7290–7295 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kakuda, S. & Haltiwanger, R.S. Deciphering the fringe-mediated notch code: identification of activating and inhibiting sites allowing discrimination between ligands. Dev. Cell 40, 193–201 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, L.-T. et al. Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Mol. Biol. Cell 16, 927–942 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Müller, J. et al. O-fucosylation of the notch ligand mDLL1 by POFUT1 is dispensable for ligand function. PLoS One 9, e88571 (2014).

    PubMed  PubMed Central  Google Scholar 

  34. Panin, V.M. et al. Notch ligands are substrates for protein O-fucosyltransferase-1 and Fringe. J. Biol. Chem. 277, 29945–29952 (2002).

    CAS  PubMed  Google Scholar 

  35. Luca, V.C. et al. Notch-Jagged complex structure implicates a catch bond in tuning ligand sensitivity. Science 355, 1320–1324 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Song, Y., Kumar, V., Wei, H.-X., Qiu, J. & Stanley, P. Lunatic, manic, and radical fringe each promote T and B cell development. J. Immunol. 196, 232–243 (2016).

    CAS  PubMed  Google Scholar 

  37. Andrawes, M.B. et al. Intrinsic selectivity of Notch 1 for Delta-like 4 over Delta-like 1. J. Biol. Chem. 288, 25477–25489 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sawaguchi, S. et al. O-GlcNAc on NOTCH1 EGF repeats regulates ligand-induced Notch signaling and vascular development in mammals. eLife 6, e24419 (2017).

    PubMed  PubMed Central  Google Scholar 

  39. Hiruma-Shimizu, K. et al. Chemical synthesis, folding, and structural insights into O-fucosylated epidermal growth factor-like repeat 12 of mouse Notch-1 receptor. J. Am. Chem. Soc. 132, 14857–14865 (2010).

    CAS  PubMed  Google Scholar 

  40. Lira-Navarrete, E. et al. Structural insights into the mechanism of protein O-fucosylation. PLoS One 6, e25365 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rana, N.A. et al. O-glucose trisaccharide is present at high but variable stoichiometry at multiple sites on mouse Notch1. J. Biol. Chem. 286, 31623–31637 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Harvey, B.M. et al. Mapping sites of O-glycosylation and fringe elongation on Drosophila Notch. J. Biol. Chem. 291, 16348–16360 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Stanley, P. & Guidos, C.J. Regulation of Notch signaling during T- and B-cell development by O-fucose glycans. Immunol. Rev. 230, 201–215 (2009).

    CAS  PubMed  Google Scholar 

  44. Aster, J.C., Pear, W.S. & Blacklow, S.C. The varied roles of notch in cancer. Annu. Rev. Pathol. 12, 245–275 (2016).

    PubMed  PubMed Central  Google Scholar 

  45. Purow, B.W. et al. Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res. 65, 2353–2363 (2005).

    CAS  PubMed  Google Scholar 

  46. Ridgway, J. et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444, 1083–1087 (2006).

    CAS  PubMed  Google Scholar 

  47. Sawey, E.T. et al. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by Oncogenomic screening. Cancer Cell 19, 347–358 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ma, L. et al. Overexpression of protein O-fucosyltransferase 1 accelerates hepatocellular carcinoma progression via the Notch signaling pathway. Biochem. Biophys. Res. Commun. 473, 503–510 (2016).

    CAS  PubMed  Google Scholar 

  49. Yokota, S. et al. Protein O-fucosyltransferase 1: a potential diagnostic marker and therapeutic target for human oral cancer. Int. J. Oncol. 43, 1864–1870 (2013).

    CAS  PubMed  Google Scholar 

  50. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B. & Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).

    CAS  PubMed  Google Scholar 

  51. White, R.M. et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2, 183–189 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Nye, J.S., Kopan, R. & Axel, R. An activated Notch suppresses neurogenesis and myogenesis but not gliogenesis in mammalian cells. Development 120, 2421–2430 (1994).

    CAS  PubMed  Google Scholar 

  53. Shimizu, K. et al. Mouse jagged1 physically interacts with notch2 and other notch receptors. Assessment by quantitative methods. J. Biol. Chem. 274, 32961–32969 (1999).

    CAS  PubMed  Google Scholar 

  54. Thomas, M. et al. Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc. Natl. Acad. Sci. USA 102, 5679–5684 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kakuda, S. & Haltiwanger, R.S. Analyzing the posttranslational modification status of Notch using mass spectrometry. Methods Mol. Biol. 1187, 209–221 (2014).

    PubMed  Google Scholar 

  56. Yamamoto, S. et al. A mutation in EGF repeat-8 of Notch discriminates between Serrate/Jagged and Delta family ligands. Science 338, 1229–1232 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Rana, N.A. & Haltiwanger, R.S. Fringe benefits: functional and structural impacts of O-glycosylation on the extracellular domain of Notch receptors. Curr. Opin. Struct. Biol. 21, 583–589 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Van de Walle, I. et al. Jagged2 acts as a Delta-like Notch ligand during early hematopoietic cell fate decisions. Blood 117, 4449–4459 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants R01GM061126 (R.S.H.), R01GM093282 (P.W.), R01GM106417 (P.S.) and K99CA204738 (V.C.L.). M.S. was partially supported by T32GM00844. We thank the following for providing materials: J. Nye (Northwestern University Medical School), S. Chiba (University of Tokyo), G. Bornkamm (Helmholtz Zentrum Munchen), G. Weinmater (UCLA), S. Blacklow (Harvard), S. Kakuda (Stony Brook University), and C. Guidos (University of Toronto).

Author information

Authors and Affiliations

Authors

Contributions

M.S., P.W. and R.S.H. conceived experiments, analyzed and interpreted data and wrote the paper. L.U.N. synthesized fucose analogs. M.S., V.K., L.F., H.T. and H.H. designed and performed experiments. V.C.L. and K.C.G. constructed structural models. P.S. and P.W. helped design experiments, interpret data and revise the manuscript.

Corresponding authors

Correspondence to Peng Wu or Robert S Haltiwanger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–9 (PDF 9748 kb)

Life Sciences Reporting Summary (PDF 240 kb)

Supplementary Note 1

Supplementary Note 1 (PDF 4146 kb)

Supplementary Note 2

Synthetic protocols (PDF 1200 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, M., Kumar, V., Nordstrøm, L. et al. Inhibition of Delta-induced Notch signaling using fucose analogs. Nat Chem Biol 14, 65–71 (2018). https://doi.org/10.1038/nchembio.2520

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2520

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing