Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting proteins for degradation

An Erratum to this article was published on 01 December 2009

This article has been updated

Abstract

Protein degradation plays a central role in many cellular functions. Misfolded and damaged proteins are removed from the cell to avoid toxicity. The concentrations of regulatory proteins are adjusted by degradation at the appropriate time. Both foreign and native proteins are digested into small peptides as part of the adaptive immune response. In eukaryotic cells, an ATP-dependent protease called the proteasome is responsible for much of this proteolysis. Proteins are targeted for proteasomal degradation by a two-part degron, which consists of a proteasome binding signal and a degradation initiation site. Here we describe how both components contribute to the specificity of degradation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The overall structure of the eukaryotic proteasome and the bacterial ClpAP protease.

Katie Vicari

Figure 2: Mechanisms of targeting ubiquitinated proteins to the proteasome.

Katie Vicari

Figure 3: An initiation site is required for protein degradation.

Katie Vicari

Figure 4: The Cdc48/p97 targeting machine.

Katie Vicari

Figure 5: Degradation of specific subunits from larger complexes.

Katie Vicari

Similar content being viewed by others

Change history

  • 28 October 2009

    In the version of this article initially published, a positive competing financial interest statement was noted, where none exists. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Nussbaum, A.K. et al. Cleavage motifs of the yeast 20S proteasome β subunits deduced from digests of enolase 1. Proc. Natl. Acad. Sci. USA 95, 12504–12509 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee, C., Schwartz, M.P., Prakash, S., Iwakura, M. & Matouschek, A. ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol. Cell 7, 627–637 (2001).

    CAS  PubMed  Google Scholar 

  3. Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 386, 463–471 (1997).

    CAS  PubMed  Google Scholar 

  4. Tanaka, K. The proteasome: overview of structure and functions. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 85, 12–36 (2009).

    CAS  Google Scholar 

  5. Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477–513 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lowe, J. et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 268, 533–539 (1995).

    CAS  PubMed  Google Scholar 

  7. Groll, M. et al. A gated channel into the proteasome core particle. Nat. Struct. Biol. 7, 1062–1067 (2000).

    CAS  PubMed  Google Scholar 

  8. Johnston, J.A., Johnson, E.S., Waller, P.R.H. & Varshavsky, A. Methotrexate inhibits proteolysis of dihydrofolate reductase by the N-end rule pathway. J. Biol. Chem. 270, 8172–8178 (1995).

    CAS  PubMed  Google Scholar 

  9. Thrower, J.S., Hoffman, L., Rechsteiner, M. & Pickart, C.M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Weissman, A.M. Themes and variations on ubiquitylation. Nat. Rev. Mol. Cell Biol. 2, 169–178 (2001).

    CAS  PubMed  Google Scholar 

  11. Prakash, S., Tian, L., Ratliff, K.S., Lehotzky, R.E. & Matouschek, A. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat. Struct. Mol. Biol. 11, 830–837 (2004).

    CAS  PubMed  Google Scholar 

  12. Prakash, S., Inobe, T., Hatch, A.J. & Matouschek, A. Substrate selection by the proteasome during degradation of protein complexes. Nat. Chem. Biol. 5, 29–36 (2009).

    CAS  PubMed  Google Scholar 

  13. Ciechanover, A. & Ben-Saadon, R. N-terminal ubiquitination: more protein substrates join in. Trends Cell Biol. 14, 103–106 (2004).

    CAS  PubMed  Google Scholar 

  14. Cadwell, K. & Coscoy, L. Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science 309, 127–130 (2005).

    CAS  PubMed  Google Scholar 

  15. Hoppe, T. Multiubiquitylation by E4 enzymes: 'one size' doesn't fit all. Trends Biochem. Sci. 30, 183–187 (2005).

    CAS  PubMed  Google Scholar 

  16. Pickart, C.M. & Fushman, D. Polyubiquitin chains: polymeric protein signals. Curr. Opin. Chem. Biol. 8, 610–616 (2004).

    CAS  PubMed  Google Scholar 

  17. Jin, L., Williamson, A., Banerjee, S., Philipp, I. & Rape, M. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133, 653–665 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hofmann, R.M. & Pickart, C.M. In vitro assembly and recognition of Lys-63 polyubiquitin chains. J. Biol. Chem. 276, 27936–27943 (2001).

    CAS  PubMed  Google Scholar 

  19. Saeki, Y. et al. Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J. 28, 359–371 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu, P. et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137, 133–145 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Shaeffer, J.R. & Kania, M.A. Degradation of monoubiquitinated α-globin by 26S proteasomes. Biochemistry 34, 4015–4021 (1995).

    CAS  PubMed  Google Scholar 

  22. Boutet, S.C., Disatnik, M.-H., Chan, L.S., Iori, K. & Rando, T.A. Regulation of Pax3 by proteasomal degradation of monoubiquitinated protein in skeletal muscle progenitors. Cell 130, 349–362 (2007).

    CAS  PubMed  Google Scholar 

  23. Kravtsova-Ivantsiv, Y., Cohen, S. & Ciechanover, A. Modification by single ubiquitin moieties rather than polyubiquitination is sufficient for proteasomal processing of the p105 NF-κB precursor. Mol. Cell 33, 496–504 (2009).

    CAS  PubMed  Google Scholar 

  24. Peng, J. et al. A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21, 921–926 (2003).

    CAS  PubMed  Google Scholar 

  25. Hicke, L. & Riezman, H. Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84, 277–287 (1996).

    CAS  PubMed  Google Scholar 

  26. Hicke, L., Schubert, H.L. & Hill, C.P. Ubiquitin-binding domains. Nat. Rev. Mol. Cell Biol. 6, 610–621 (2005).

    CAS  PubMed  Google Scholar 

  27. Elsasser, S. & Finley, D. Delivery of ubiquitinated substrates to protein-unfolding machines. Nat. Cell Biol. 7, 742–749 (2005).

    CAS  PubMed  Google Scholar 

  28. Deveraux, Q., Ustrell, V., Pickart, C. & Rechsteiner, M. A 26 S protease subunit that binds ubiquitin conjugates. J. Biol. Chem. 269, 7059–7061 (1994).

    CAS  PubMed  Google Scholar 

  29. Husnjak, K. et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453, 481–488 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lam, Y.A., Lawson, T.G., Velayutham, M., Zweier, J.L. & Pickart, C.M. A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 416, 763–767 (2002).

    CAS  PubMed  Google Scholar 

  31. Elsasser, S., Chandler-Militello, D., Muller, B., Hanna, J. & Finley, D. Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J. Biol. Chem. 279, 26817–26822 (2004).

    CAS  PubMed  Google Scholar 

  32. Kim, I., Mi, K. & Rao, H. Multiple interactions of rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis. Mol. Biol. Cell 15, 3357–3365 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Verma, R., Oania, R., Graumann, J. & Deshaies, R.J. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 118, 99–110 (2004).

    CAS  PubMed  Google Scholar 

  34. Chen, L. & Madura, K. Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol. Cell. Biol. 22, 4902–4913 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rao, H. & Sastry, A. Recognition of specific ubiquitin conjugates is important for the proteolytic functions of the ubiquitin-associated domain proteins Dsk2 and Rad23. J. Biol. Chem. 277, 11691–11695 (2002).

    CAS  PubMed  Google Scholar 

  36. Wilkinson, C.R. et al. Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nat. Cell Biol. 3, 939–943 (2001).

    CAS  PubMed  Google Scholar 

  37. Hiyama, H. et al. Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26 S proteasome. J. Biol. Chem. 274, 28019–28025 (1999).

    CAS  PubMed  Google Scholar 

  38. Schauber, C. et al. Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 391, 715–718 (1998).

    CAS  PubMed  Google Scholar 

  39. Richly, H. et al. A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120, 73–84 (2005).

    CAS  PubMed  Google Scholar 

  40. Madura, K. Rad23 and Rpn10: perennial wallflowers join the melee. Trends Biochem. Sci. 29, 637–640 (2004).

    CAS  PubMed  Google Scholar 

  41. Sakata, E. et al. Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin-like domain. EMBO Rep. 4, 301–306 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kaplun, L. et al. The DNA damage-inducible UbL-UbA protein Ddi1 participates in Mec1-mediated degradation of Ho endonuclease. Mol. Cell. Biol. 25, 5355–5362 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Amerik, A.Y. & Hochstrasser, M. Mechanism and function of deubiquitinating enzymes. Biochim. Biophys. Acta 1695, 189–207 (2004).

    CAS  PubMed  Google Scholar 

  44. Verma, R. et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298, 611–615 (2002).

    CAS  PubMed  Google Scholar 

  45. Yao, T. & Cohen, R.E. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419, 403–407 (2002).

    CAS  PubMed  Google Scholar 

  46. Hanna, J. et al. Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 127, 99–111 (2006).

    CAS  PubMed  Google Scholar 

  47. Lam, Y.A., Xu, W., DeMartino, G.N. & Cohen, R.E. Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature 385, 737–740 (1997).

    CAS  PubMed  Google Scholar 

  48. Crosas, B. et al. Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell 127, 1401–1413 (2006).

    CAS  PubMed  Google Scholar 

  49. Kraut, D.A., Prakash, S. & Matouschek, A. To degrade or release: ubiquitin-chain remodeling. Trends Cell Biol. 17, 419–421 (2007).

    CAS  PubMed  Google Scholar 

  50. Peters, J.M. The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol. Cell 9, 931–943 (2002).

    CAS  PubMed  Google Scholar 

  51. Rape, M., Reddy, S.K. & Kirschner, M.W. The processivity of multiubiquitination by the APC determines the order of substrate degradation. Cell 124, 89–103 (2006).

    CAS  PubMed  Google Scholar 

  52. Ye, Y. Diverse functions with a common regulator: ubiquitin takes command of an AAA ATPase. J. Struct. Biol. 156, 29–40 (2006).

    CAS  PubMed  Google Scholar 

  53. Jentsch, S. & Rumpf, S. Cdc48 (p97): a “molecular gearbox” in the ubiquitin pathway? Trends Biochem. Sci. 32, 6–11 (2007).

    CAS  PubMed  Google Scholar 

  54. Jarosch, E. et al. Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat. Cell Biol. 4, 134–139 (2002).

    CAS  PubMed  Google Scholar 

  55. Ye, Y., Meyer, H.H. & Rapoport, T.A. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414, 652–656 (2001).

    CAS  PubMed  Google Scholar 

  56. Bachmair, A. & Varshavsky, A. The degradation signal in a short-lived protein. Cell 56, 1019–1032 (1989).

    CAS  PubMed  Google Scholar 

  57. Petroski, M.D. & Deshaies, R.J. Context of multiubiquitin chain attachment influences the rate of Sic1 degradation. Mol. Cell 11, 1435–1444 (2003).

    CAS  PubMed  Google Scholar 

  58. Takeuchi, J., Chen, H. & Coffino, P. Proteasome substrate degradation requires association plus extended peptide. EMBO J. 26, 123–131 (2007).

    CAS  PubMed  Google Scholar 

  59. Liu, C.W., Corboy, M.J., DeMartino, G.N. & Thomas, P.J. Endoproteolytic activity of the proteasome. Science 299, 408–411 (2003).

    CAS  PubMed  Google Scholar 

  60. Piwko, W. & Jentsch, S. Proteasome-mediated protein processing by bidirectional degradation initiated from an internal site. Nat. Struct. Mol. Biol. 13, 691–697 (2006).

    CAS  PubMed  Google Scholar 

  61. Hinnerwisch, J., Fenton, W.A., Furtak, K.J., Farr, G.W. & Horwich, A.L. Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation. Cell 121, 1029–1041 (2005).

    CAS  PubMed  Google Scholar 

  62. Martin, A., Baker, T.A. & Sauer, R.T. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Nat. Struct. Mol. Biol. 15, 1147–1151 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Park, E. et al. Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase. J. Biol. Chem. 280, 22892–22898 (2005).

    CAS  PubMed  Google Scholar 

  64. Yamada-Inagawa, T., Okuno, T., Karata, K., Yamanaka, K. & Ogura, T. Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis. J. Biol. Chem. 278, 50182–50187 (2003).

    CAS  PubMed  Google Scholar 

  65. Wang, J. et al. Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU. Structure 9, 1107–1116 (2001).

    CAS  PubMed  Google Scholar 

  66. Wang, J. et al. Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 9, 177–184 (2001).

    CAS  PubMed  Google Scholar 

  67. Heessen, S., Masucci, M.G. & Dantuma, N.P. The UBA2 domain functions as an intrinsic stabilization signal that protects Rad23 from proteasomal degradation. Mol. Cell 18, 225–235 (2005).

    CAS  PubMed  Google Scholar 

  68. Verhoef, L.G. et al. Minimal length requirement for proteasomal degradation of ubiquitin-dependent substrates. FASEB J. 23, 123–133 (2009).

    CAS  PubMed  Google Scholar 

  69. Tian, L., Holmgren, R.A. & Matouschek, A. A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-κB. Nat. Struct. Mol. Biol. 12, 1045–1053 (2005).

    CAS  PubMed  Google Scholar 

  70. Johnson, E.S., Gonda, D.K. & Varshavsky, A. Cis-trans recognition and subunit-specific degradation of short-lived proteins. Nature 346, 287–291 (1990).

    CAS  PubMed  Google Scholar 

  71. Hochstrasser, M. & Varshavsky, A. In vivo degradation of a transcriptional regulator: the yeast α2 repressor. Cell 61, 697–708 (1990).

    CAS  PubMed  Google Scholar 

  72. King, R.W., Deshaies, R.J., Peters, J.M. & Kirschner, M.W. How proteolysis drives the cell cycle. Science 274, 1652–1659 (1996).

    CAS  PubMed  Google Scholar 

  73. Nishiyama, A. et al. A nonproteolytic function of the proteasome is required for the dissociation of Cdc2 and cyclin B at the end of M phase. Genes Dev. 14, 2344–2357 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Jeffrey, P.D. et al. Mechanism of CDK activation revealed by the structure of a cyclin A-CDK2 complex. Nature 376, 313–320 (1995).

    CAS  PubMed  Google Scholar 

  75. King, R.W., Glotzer, M. & Kirschner, M.W. Mutagenic analysis of the destruction signal of mitotic cyclins and structural characterization of ubiquitinated intermediates. Mol. Biol. Cell 7, 1343–1357 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Klotzbucher, A., Stewart, E., Harrison, D. & Hunt, T. The 'destruction box' of cyclin A allows B-type cyclins to be ubiquitinated, but not efficiently destroyed. EMBO J. 15, 3053–3064 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Verma, R., McDonald, H., Yates, J.R. III & Deshaies, R.J. Selective degradation of ubiquitinated Sic1 by purified 26S proteasome yields active S phase cyclin-Cdk. Mol. Cell 8, 439–448 (2001).

    CAS  PubMed  Google Scholar 

  78. Dang, Y., Siew, L.M. & Zheng, Y.H. APOBEC3G is degraded by the proteasomal pathway in a Vif-dependent manner without being polyubiquitylated. J. Biol. Chem. 283, 13124–13131 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Gonzalez, S.L., Stremlau, M., He, X., Basile, J.R. & Munger, K. Degradation of the retinoblastoma tumor suppressor by the human papillomavirus type 16 E7 oncoprotein is important for functional inactivation and is separable from proteasomal degradation of E7. J. Virol. 75, 7583–7591 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Berezutskaya, E. & Bagchi, S. The human papillomavirus E7 oncoprotein functionally interacts with the S4 subunit of the 26 S proteasome. J. Biol. Chem. 272, 30135–30140 (1997).

    CAS  PubMed  Google Scholar 

  81. Hoyt, M.A. & Coffino, P. Ubiquitin-free routes into the proteasome. Cell. Mol. Life Sci. 61, 1596–1600 (2004).

    CAS  PubMed  Google Scholar 

  82. Jariel-Encontre, I., Bossis, G. & Piechaczyk, M. Ubiquitin-independent degradation of proteins by the proteasome. Biochim. Biophys. Acta 1786, 153–177 (2008).

    CAS  PubMed  Google Scholar 

  83. Orlowski, M. & Wilk, S. Ubiquitin-independent proteolytic functions of the proteasome. Arch. Biochem. Biophys. 415, 1–5 (2003).

    CAS  PubMed  Google Scholar 

  84. Verma, R. & Deshaies, R.J. A proteasome howdunit: the case of the missing signal. Cell 101, 341–344 (2000).

    CAS  PubMed  Google Scholar 

  85. Murakami, Y. et al. Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 360, 597–599 (1992).

    CAS  PubMed  Google Scholar 

  86. Zhang, M., Pickart, C.M. & Coffino, P. Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. EMBO J. 22, 1488–1496 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang, M., MacDonald, A.I., Hoyt, M.A. & Coffino, P. Proteasomes begin ornithine decarboxylase digestion at the C terminus. J. Biol. Chem. 279, 20959–20965 (2004).

    CAS  PubMed  Google Scholar 

  88. Baugh, J.M., Viktorova, E.G. & Pilipenko, E.V. Proteasomes can degrade a significant proportion of cellular proteins independent of ubiquitination. J. Mol. Biol. 386, 814–827 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Baker, T.A. & Sauer, R.T. ATP-dependent proteases of bacteria: recognition logic and operating principles. Trends Biochem. Sci. 31, 647–653 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Sauer, R.T. et al. Sculpting the proteome with AAA(+) proteases and disassembly machines. Cell 119, 9–18 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Striebel, F., Kress, W. & Weber-Ban, E. Controlled destruction: AAA+ ATPases in protein degradation from bacteria to eukaryotes. Curr. Opin. Struct. Biol. 19, 209–217 (2009).

    CAS  PubMed  Google Scholar 

  92. Pearce, M.J., Mintseris, J., Ferreyra, J., Gygi, S.P. & Darwin, K.H. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322, 1104–1107 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Burns, K.E., Liu, W.T., Boshoff, H.I., Dorrestein, P.C. & Barry, C.E. III. Proteasomal protein degradation in Mycobacteria is dependent upon a prokaryotic ubiquitin-like protein. J. Biol. Chem. 284, 3069–3075 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Iyer, L., Burroughs, A.M. & Aravind, L. Unraveling the biochemistry and provenance of pupylation: a prokaryotic analog of ubiquitination. Biol. Direct 3, 45 (2008).

    PubMed  PubMed Central  Google Scholar 

  95. Flynn, J.M., Neher, S.B., Kim, Y.I., Sauer, R.T. & Baker, T.A. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol. Cell 11, 671–683 (2003).

    CAS  PubMed  Google Scholar 

  96. Keiler, K.C., Waller, P.R. & Sauer, R.T. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271, 990–993 (1996).

    CAS  PubMed  Google Scholar 

  97. Hoskins, J.R. & Wickner, S. Two peptide sequences can function cooperatively to facilitate binding and unfolding by ClpA and degradation by ClpAP. Proc. Natl. Acad. Sci. USA 103, 909–914 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ninnis, R.L., Spall, S.K., Talbo, G.H., Truscott, K.N. & Dougan, D.A. Modification of PATase by L/F-transferase generates a ClpS-dependent N-end rule substrate in Escherichia coli. EMBO J. 28, 1732–1744 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Levchenko, I., Seidel, M., Sauer, R.T. & Baker, T.A.A. Specificity-enhancing factor for the ClpXP degradation machine. Science 289, 2354–2356 (2000).

    CAS  PubMed  Google Scholar 

  100. Dougan, D.A., Weber-Ban, E. & Bukau, B. Targeted delivery of an ssrA-tagged substrate by the adaptor protein SspB to its cognate AAA+ protein ClpX. Mol. Cell 12, 373–380 (2003).

    CAS  PubMed  Google Scholar 

  101. Muffler, A., Fischer, D., Altuvia, S., Storz, G. & Hengge-Aronis, R. The response regulator RssB controls stability of the σ(S) subunit of RNA polymerase in Escherichia coli. EMBO J. 15, 1333–1339 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhou, Y., Gottesman, S., Hoskins, J.R., Maurizi, M.R. & Wickner, S. The RssB response regulator directly targets s(S) for degradation by ClpXP. Genes Dev. 15, 627–637 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Bougdour, A., Wickner, S. & Gottesman, S. Modulating RssB activity: IraP, a novel regulator of s(S) stability in Escherichia coli. Genes Dev. 20, 884–897 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986).

    CAS  PubMed  Google Scholar 

  105. Tobias, J.W., Shrader, T.E., Rocap, G. & Varshavsky, A. The N-end rule in bacteria. Science 254, 1374–1377 (1991).

    CAS  PubMed  Google Scholar 

  106. Erbse, A. et al. ClpS is an essential component of the N-end rule pathway in Escherichia coli. Nature 439, 753–756 (2006).

    CAS  PubMed  Google Scholar 

  107. Dougan, D.A., Reid, B.G., Horwich, A.L. & Bukau, B. ClpS, a substrate modulator of the ClpAP machine. Mol. Cell 9, 673–683 (2002).

    CAS  PubMed  Google Scholar 

  108. Mogk, A., Schmidt, R. & Bukau, B. The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol. 17, 165–172 (2007).

    CAS  PubMed  Google Scholar 

  109. Wang, K.H., Roman-Hernandez, G., Grant, R.A., Sauer, R.T. & Baker, T.A. The molecular basis of N-end rule recognition. Mol. Cell 32, 406–414 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Lupas, A.N. & Koretke, K.K. Bioinformatic analysis of ClpS, a protein module involved in prokaryotic and eukaryotic protein degradation. J. Struct. Biol. 141, 77–83 (2003).

    CAS  PubMed  Google Scholar 

  111. Schuenemann, V.J. et al. Structural basis of N-end rule substrate recognition in Escherichia coli by the ClpAP adaptor protein ClpS. EMBO Rep. 10, 508–514 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Koodathingal, P. et al. ATP-dependent proteases differ substantially in their ability to unfold globular proteins. J. Biol. Chem. 284, 18674–18684 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Bence, N.F., Sampat, R.M. & Kopito, R.R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555 (2001).

    CAS  PubMed  Google Scholar 

  114. Kaganovich, D., Kopito, R. & Frydman, J. Misfolded proteins partition between two distinct quality control compartments. Nature 454, 1088–1095 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Banaszynski, L.A. & Wandless, T.J. Conditional control of protein function. Chem. Biol. 13, 11–21 (2006).

    CAS  PubMed  Google Scholar 

  116. Matsuzawa, S., Cuddy, M., Fukushima, T. & Reed, J.C. Method for targeting protein destruction by using a ubiquitin-independent, proteasome-mediated degradation pathway. Proc. Natl. Acad. Sci. USA 102, 14982–14987 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Spencer, D.M., Wandless, T.J., Schreiber, S.L. & Crabtree, G.R. Controlling signal transduction with synthetic ligands. Science 262, 1019–1024 (1993).

    CAS  PubMed  Google Scholar 

  118. Liberles, S.D., Diver, S.T., Austin, D.J. & Schreiber, S.L. Inducible gene expression and protein translocation using nontoxic ligands identified by a mammalian three-hybrid screen. Proc. Natl. Acad. Sci. USA 94, 7825–7830 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Janse, D.M., Crosas, B., Finley, D. & Church, G.M. Localization to the proteasome is sufficient for degradation. J. Biol. Chem. 279, 21415–21420 (2004).

    CAS  PubMed  Google Scholar 

  120. Stankunas, K. et al. Conditional protein alleles using knockin mice and a chemical inducer of dimerization. Mol. Cell 12, 1615–1624 (2003).

    CAS  PubMed  Google Scholar 

  121. Banaszynski, L.A., Chen, L.-C., Maynard-Smith, L.A., Ooi, A.G.L. & Wandless, T.J.A. Rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126, 995–1004 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Pratt, M.R., Schwartz, E.C. & Muir, T.W. Small-molecule-mediated rescue of protein function by an inducible proteolytic shunt. Proc. Natl. Acad. Sci. USA 104, 11209–11214 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Gosink, M.M. & Vierstra, R.D. Redirecting the specificity of ubiquitination by modifying ubiquitin-conjugating enzymes. Proc. Natl. Acad. Sci. USA 92, 9117–9121 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhou, P., Bogacki, R., McReynolds, L. & Howley, P.M. Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins. Mol. Cell 6, 751–756 (2000).

    CAS  PubMed  Google Scholar 

  125. Su, Y., Ishikawa, S., Kojima, M. & Liu, B. Eradication of pathogenic β-catenin by Skp1/Cullin/F box ubiquitination machinery. Proc. Natl. Acad. Sci. USA 100, 12729–12734 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Sakamoto, K.M. et al. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. USA 98, 8554–8559 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Schneekloth, J.S. et al. Chemical genetic control of protein levels: selective in vivo targeted degradation. J. Am. Chem. Soc. 126, 3748–3754 (2004).

    CAS  PubMed  Google Scholar 

  128. Park, E.C., Finley, D. & Szostak, J.W. A strategy for the generation of conditional mutations by protein destabilization. Proc. Natl. Acad. Sci. USA 89, 1249–1252 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Dohmen, R.J., Wu, P. & Varshavsky, A. Heat-inducible degron: a method for constructing temperature-sensitive mutants. Science 263, 1273–1276 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Matouschek lab for advice and comments. The work was supported by grant R01GM64003 from the US National Institutes of Health, by grant MCB 426913 from the US National Science Foundation and by the Robert H. Lurie Comprehensive Cancer Center at Northwestern University. E.K.S. was supported by the Oncogenesis and Developmental Biology training grant T32 CA080621 from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Matouschek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schrader, E., Harstad, K. & Matouschek, A. Targeting proteins for degradation. Nat Chem Biol 5, 815–822 (2009). https://doi.org/10.1038/nchembio.250

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.250

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing