Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrophilic probes for deciphering substrate recognition by O-GlcNAc transferase

Abstract

O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an essential human glycosyltransferase that adds O-GlcNAc modifications to numerous proteins. However, little is known about the mechanism with which OGT recognizes various protein substrates. Here we report on GlcNAc electrophilic probes (GEPs) to expedite the characterization of OGT–substrate recognition. Data from mass spectrometry, X-ray crystallization, and biochemical and radiolabeled kinetic assays support the application of GEPs to rapidly report the impacts of OGT mutations on protein substrate or sugar binding and to discover OGT residues crucial for protein recognition. Interestingly, we found that the same residues on the inner surface of the N-terminal domain contribute to OGT interactions with different protein substrates. By tuning reaction conditions, a GEP enables crosslinking of OGT with acceptor substrates in situ, affording a unique method to discover genuine substrates that weakly or transiently interact with OGT. Hence, GEPs provide new strategies to dissect OGT–substrate binding and recognition.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The strategy of GlcNAc electrophilic probes (GEPs) for discerning altered OGT ability of sugar binding compared to protein substrate binding.
Figure 2: MS data show that GEP1 specifically labels the C917 residue of OGT.
Figure 3: LC–MS/MS and X-ray crystallography demonstrate GEP1-derived O-GlcNAcylation on peptide substrates of OGT.
Figure 4: Principle validation of GEP1A fluorescence assay and its application for characterizing additional OGT mutants with altered ability on sugar binding compared to protein substrate binding (or sugar transfer).
Figure 5: Crystal structure of the crosslinked OGT–GEP1–CKII complex.

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Vocadlo, D.J. O-GlcNAc processing enzymes: catalytic mechanisms, substrate specificity, and enzyme regulation. Curr. Opin. Chem. Biol. 16, 488–497 (2012).

    CAS  PubMed  Google Scholar 

  2. Hardivillé, S. & Hart, G.W. Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell Metab. 20, 208–213 (2014).

    PubMed Central  PubMed  Google Scholar 

  3. Hart, G.W., Slawson, C., Ramirez-Correa, G. & Lagerlof, O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem. 80, 825–858 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Capotosti, F. et al. O-GlcNAc transferase catalyzes site-specific proteolysis of HCF-1. Cell 144, 376–388 (2011).

    CAS  PubMed  Google Scholar 

  5. Ma, Z., Vocadlo, D.J. & Vosseller, K. Hyper-O-GlcNAcylation is anti-apoptotic and maintains constitutive NF-κB activity in pancreatic cancer cells. J. Biol. Chem. 288, 15121–15130 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Shafi, R. et al. The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc. Natl. Acad. Sci. USA 97, 5735–5739 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Howerton, C.L. & Bale, T.L. Targeted placental deletion of OGT recapitulates the prenatal stress phenotype including hypothalamic mitochondrial dysfunction. Proc. Natl. Acad. Sci. USA 111, 9639–9644 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ma, J. & Hart, G.W. Protein O-GlcNAcylation in diabetes and diabetic complications. Expert Rev. Proteomics 10, 365–380 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  9. de Queiroz, R.M., Carvalho, E. & Dias, W.B. O-GlcNAcylation: the sweet side of the cancer. Front. Oncol. 4, 132 (2014).

    PubMed Central  PubMed  Google Scholar 

  10. Yuzwa, S.A. & Vocadlo, D.J. O-GlcNAc and neurodegeneration: biochemical mechanisms and potential roles in Alzheimer's disease and beyond. Chem. Soc. Rev. 43, 6839–6858 (2014).

    CAS  PubMed  Google Scholar 

  11. Laczy, B. et al. Protein O-GlcNAcylation: a new signaling paradigm for the cardiovascular system. Am. J. Physiol. Heart Circ. Physiol. 296, H13–H28 (2009).

    CAS  PubMed  Google Scholar 

  12. Ma, J. & Hart, G.W. O-GlcNAc profiling: from proteins to proteomes. Clin. Proteomics 11, 8 (2014).

    PubMed Central  PubMed  Google Scholar 

  13. Levine, Z.G. & Walker, S. The biochemistry of O-GlcNAc transferase: which functions make it essential in mammalian cells? Annu. Rev. Biochem. 85, 631–657 (2016).

    CAS  PubMed  Google Scholar 

  14. Iyer, S.P.N. & Hart, G.W. Roles of the tetratricopeptide repeat domain in O-GlcNAc transferase targeting and protein substrate specificity. J. Biol. Chem. 278, 24608–24616 (2003).

    CAS  PubMed  Google Scholar 

  15. Lazarus, M.B. et al. Structural snapshots of the reaction coordinate for O-GlcNAc transferase. Nat. Chem. Biol. 8, 966–968 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Lazarus, M.B., Nam, Y., Jiang, J., Sliz, P. & Walker, S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 469, 564–567 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Pierce, M.M., Raman, C.S. & Nall, B.T. Isothermal titration calorimetry of protein-protein interactions. Methods 19, 213–221 (1999).

    CAS  PubMed  Google Scholar 

  18. Hoa, X.D., Kirk, A.G. & Tabrizian, M. Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosens. Bioelectron. 23, 151–160 (2007).

    CAS  PubMed  Google Scholar 

  19. Leitner, A., Faini, M., Stengel, F. & Aebersold, R. Crosslinking and mass spectrometry: an integrated technology to understand the structure and function of molecular machines. Trends Biochem. Sci. 41, 20–32 (2016).

    CAS  PubMed  Google Scholar 

  20. Jiang, J., Lazarus, M.B., Pasquina, L., Sliz, P. & Walker, S. A neutral diphosphate mimic crosslinks the active site of human O-GlcNAc transferase. Nat. Chem. Biol. 8, 72–77 (2011).

    PubMed Central  PubMed  Google Scholar 

  21. Lairson, L.L., Henrissat, B., Davies, G.J. & Withers, S.G. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77, 521–555 (2008).

    CAS  PubMed  Google Scholar 

  22. Kaur, P., Kiselar, J., Yang, S. & Chance, M.R. Quantitative protein topography analysis and high-resolution structure prediction using hydroxyl radical labeling and tandem-ion mass spectrometry (MS). Mol. Cell. Proteomics 14, 1159–1168 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Pathak, S. et al. The active site of O-GlcNAc transferase imposes constraints on substrate sequence. Nat. Struct. Mol. Biol. 22, 744–750 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Kreppel, L.K. & Hart, G.W. Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. J. Biol. Chem. 274, 32015–32022 (1999).

    CAS  PubMed  Google Scholar 

  25. Mayer, A., Gloster, T.M., Chou, W.K., Vocadlo, D.J. & Tanner, M.E. 6″-Azido-6″-deoxy-UDP-N-acetylglucosamine as a glycosyltransferase substrate. Bioorg. Med. Chem. Lett. 21, 1199–1201 (2011).

    CAS  PubMed  Google Scholar 

  26. Chuh, K.N., Zaro, B.W., Piller, F., Piller, V. & Pratt, M.R. Changes in metabolic chemical reporter structure yield a selective probe of O-GlcNAc modification. J. Am. Chem. Soc. 136, 12283–12295 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Davis, L.I. & Blobel, G. Nuclear pore complex contains a family of glycoproteins that includes p62: glycosylation through a previously unidentified cellular pathway. Proc. Natl. Acad. Sci. USA 84, 7552–7556 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Schimpl, M. et al. O-GlcNAc transferase invokes nucleotide sugar pyrophosphate participation in catalysis. Nat. Chem. Biol. 8, 969–974 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Kumari, M. et al. Exploring reaction pathways for O-GlcNAc transferase catalysis. A string method study. J. Phys. Chem. B 119, 4371–4381 (2015).

    CAS  PubMed  Google Scholar 

  30. Lazarus, B.D., Love, D.C. & Hanover, J.A. Recombinant O-GlcNAc transferase isoforms: identification of O-GlcNAcase, yes tyrosine kinase, and tau as isoform-specific substrates. Glycobiology 16, 415–421 (2006).

    CAS  PubMed  Google Scholar 

  31. Rexach, J.E. et al. Quantification of O-glycosylation stoichiometry and dynamics using resolvable mass tags. Nat. Chem. Biol. 6, 645–651 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Khidekel, N. et al. Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nat. Chem. Biol. 3, 339–348 (2007).

    CAS  PubMed  Google Scholar 

  33. Zhao, P. et al. Combining high-energy C-trap dissociation and electron transfer dissociation for protein O-GlcNAc modification site assignment. J. Proteome Res. 10, 4088–4104 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Lee, A. et al. Combined antibody/lectin enrichment identifies extensive changes in the O-GlcNAc sub-proteome upon oxidative stress. J. Proteome Res. 15, 4318–4336 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hahne, H. et al. Proteome wide purification and identification of O-GlcNAc-modified proteins using click chemistry and mass spectrometry. J. Proteome Res. 12, 927–936 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Hahne, H., Gholami, A.M. & Kuster, B. Discovery of O-GlcNAc-modified proteins in published large-scale proteome data. Mol. Cell. Proteomics 11, 843–850 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Kamemura, K., Hayes, B.K., Comer, F.I. & Hart, G.W. Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins: alternative glycosylation/phosphorylation of THR-58, a known mutational hot spot of c-Myc in lymphomas, is regulated by mitogens. J. Biol. Chem. 277, 19229–19235 (2002).

    CAS  PubMed  Google Scholar 

  38. Malaker, S.A. et al. Identification of glycopeptides as posttranslationally modified neoantigens in leukemia. Cancer Immunol. Res. 5, 376–384 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Phueaouan, T. et al. Aberrant O-GlcNAc-modified proteins expressed in primary colorectal cancer. Oncol. Rep. 30, 2929–2936 (2013).

    CAS  PubMed  Google Scholar 

  40. Lazarus, M.B. et al. HCF-1 is cleaved in the active site of O-GlcNAc transferase. Science 342, 1235–1239 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Wells, L. et al. Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol. Cell. Proteomics 1, 791–804 (2002).

    CAS  PubMed  Google Scholar 

  42. Vosseller, K. et al. O-linked N-acetylglucosamine proteomics of postsynaptic density preparations using lectin weak affinity chromatography and mass spectrometry. Mol. Cell. Proteomics 5, 923–934 (2006).

    CAS  PubMed  Google Scholar 

  43. Vocadlo, D.J., Hang, H.C., Kim, E.-J., Hanover, J.A. & Bertozzi, C.R. A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc. Natl. Acad. Sci. USA 100, 9116–9121 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sakaidani, Y. et al. O-linked-N-acetylglucosamine on extracellular protein domains mediates epithelial cell-matrix interactions. Nat. Commun. 2, 583 (2011).

    PubMed  Google Scholar 

  45. Müller, R., Jenny, A. & Stanley, P. The EGF repeat-specific O-GlcNAc-transferase Eogt interacts with notch signaling and pyrimidine metabolism pathways in Drosophila. PLoS One 8, e62835 (2013).

    PubMed Central  PubMed  Google Scholar 

  46. Xiao, H. & Wu, R. Global and site-specific analysis revealing unexpected and extensive protein S-GlcNAcylation in human cells. Anal. Chem. 89, 3656–3663 (2017).

    CAS  PubMed  Google Scholar 

  47. Zaro, B.W., Yang, Y.Y., Hang, H.C. & Pratt, M.R. Chemical reporters for fluorescent detection and identification of O-GlcNAc-modified proteins reveal glycosylation of the ubiquitin ligase NEDD4-1. Proc. Natl. Acad. Sci. USA 108, 8146–8151 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    CAS  PubMed  Google Scholar 

  49. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed  Google Scholar 

  50. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    PubMed  Google Scholar 

  51. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  52. Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    CAS  PubMed  Google Scholar 

  53. Boersema, P.J., Raijmakers, R., Lemeer, S., Mohammed, S. & Heck, A.J.R. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 4, 484–494 (2009).

    CAS  PubMed  Google Scholar 

  54. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    CAS  PubMed  Google Scholar 

  55. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

    CAS  PubMed  Google Scholar 

  56. UniProt Consortium. Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res. 42, D191–D198 (2014).

  57. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Walker's lab at Harvard Medical School for kindly sharing the expression plasmids of OGT, OGT4.5, OGA, and NUP62. We would like to acknowledge the research funding support from University of Wisconsin–Madison (to J.J.), a Vilas Research Investigator Award (to J.J.), NIH R01 GM121718 (to J.J.), NIH R21 AG055377 (to L.L.), NIH R01 GM117058 (to Y.G.), and NIH R01 HL109810 (to Y.G.). We also thank NIH Shared Instrument Program Grant S10 RR029531 and high-end instrument grant S10 OD018475 for funding the MS instruments.

Author information

Authors and Affiliations

Authors

Contributions

J.J. oversaw all aspects of the experiments and manuscript preparation. C.-W.H. performed mass spectrometric, crosslinking, and cell culture experiments. M.W. and H.L. synthesized the compounds. D.F. performed mutagenesis, in-gel fluorescence scanning, and enzyme kinetic experiments. B.L. obtained protein crystals and determined structures. L. Lu assisted with protein purification. X.Z., L. Li, Z.L., L.W., and Y.G. provided access to the MS instruments. C.-W.H. and J.J. wrote the manuscript with help from M.W., D.F., B.L., and H.L.

Corresponding author

Correspondence to Jiaoyang Jiang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–5, Supplementary Figures 1–14 and Supplementary Notes 1–3 (PDF 8347 kb)

Life Sciences Reporting Summary (PDF 130 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, CW., Worth, M., Fan, D. et al. Electrophilic probes for deciphering substrate recognition by O-GlcNAc transferase. Nat Chem Biol 13, 1267–1273 (2017). https://doi.org/10.1038/nchembio.2494

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2494

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing