Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GATOR1 regulates nitrogenic cataplerotic reactions of the mitochondrial TCA cycle

Abstract

The GATOR1 (SEACIT) complex consisting of Iml1–Npr2–Npr3 inhibits target of rapamycin complex 1 (TORC1) in response to amino acid insufficiency. In glucose medium, Saccharomyces cerevisiae mutants lacking the function of this complex grow poorly in the absence of amino acid supplementation, despite showing hallmarks of increased TORC1 signaling. Such mutants sense that they are amino acid replete and thus repress metabolic activities that are important for achieving this state. We found that npr2Δ mutants have defective mitochondrial tricarboxylic acid (TCA)-cycle activity and retrograde response. Supplementation with glutamine, and especially aspartate, which are nitrogen-containing forms of TCA-cycle intermediates, rescues growth of npr2Δ mutants. These amino acids are then consumed in biosynthetic pathways that require nitrogen to support proliferative metabolism. Our findings revealed that negative regulators of TORC1, such as GATOR1 (SEACIT), regulate the cataplerotic synthesis of these amino acids from the TCA cycle, in tune with the amino acid and nitrogen status of cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The defective growth of npr2Δ mutants can be rescued by aspartate or glutamine.
Figure 2: npr2Δ mutant cells have defective mitochondrial function.
Figure 3: npr2Δ mutants exhibit a defective mitochondria-to-nucleus retrograde response.
Figure 4: npr2Δ cells produce fewer nucleotide metabolites.
Figure 5: The GATOR1 (SEACIT) complex regulates cataplerotic reactions of the mitochondrial TCA cycle in tune with the amino acid and nitrogen status of cells.

Similar content being viewed by others

References

  1. Loewith, R. & Hall, M.N. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189, 1177–1201 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Heitman, J., Movva, N.R. & Hall, M.N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253, 905–909 (1991).

    CAS  PubMed  Google Scholar 

  3. Díaz-Troya, S., Pérez-Pérez, M.E., Florencio, F.J. & Crespo, J.L. The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy 4, 851–865 (2008).

    Article  PubMed  Google Scholar 

  4. Courchesne, W.E. & Magasanik, B. Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes. J. Bacteriol. 170, 708–713 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Urban, J. et al. Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol. Cell 26, 663–674 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Crespo, J.L., Powers, T., Fowler, B. & Hall, M.N. The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc. Natl. Acad. Sci. USA 99, 6784–6789 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T.P. & Guan, K.L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 10, 935–945 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sancak, Y. et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu, X. & Tu, B.P. Selective regulation of autophagy by the Iml1-Npr2-Npr3 complex in the absence of nitrogen starvation. Mol. Biol. Cell 22, 4124–4133 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dokudovskaya, S. et al. A conserved coatomer-related complex containing Sec13 and Seh1 dynamically associates with the vacuole in. Saccharomyces cerevisiae. Mol. Cell. Proteomics 10, M110.006478 (2011).

    Article  PubMed  Google Scholar 

  11. Bar-Peled, L. et al. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340, 1100–1106 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Panchaud, N., Péli-Gulli, M.P. & De Virgilio, C. Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci. Signal. 6, ra42 (2013).

    Article  PubMed  Google Scholar 

  13. Rousselet, G., Simon, M., Ripoche, P. & Buhler, J.M. A second nitrogen permease regulator in Saccharomyces cerevisiae. FEBS Lett. 359, 215–219 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Spielewoy, N. et al. Npr2, yeast homolog of the human tumor suppressor NPRL2, is a target of Grr1 required for adaptation to growth on diverse nitrogen sources. Eukaryot. Cell 9, 592–601 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Neklesa, T.K. & Davis, R.W. A genome-wide screen for regulators of TORC1 in response to amino acid starvation reveals a conserved Npr2/3 complex. PLoS Genet. 5, e1000515 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sutter, B.M., Wu, X., Laxman, S. & Tu, B.P. Methionine inhibits autophagy and promotes growth by inducing the SAM-responsive methylation of PP2A. Cell 154, 403–415 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Laxman, S., Sutter, B.M., Shi, L. & Tu, B.P. Npr2 inhibits TORC1 to prevent inappropriate utilization of glutamine for biosynthesis of nitrogen-containing metabolites. Sci. Signal. 7, ra120 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kayikci, Ö. & Nielsen, J. Glucose repression in Saccharomyces cerevisiae. FEMS Yeast Res. 15, fov068 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hensley, C.T., Wasti, A.T. & DeBerardinis, R.J. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J. Clin. Invest. 123, 3678–3684 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nakashima, N., Noguchi, E. & Nishimoto, T. Saccharomyces cerevisiae putative G protein, Gtr1p, which forms complexes with itself and a novel protein designated as Gtr2p, negatively regulates the Ran/Gsp1p G protein cycle through Gtr2p. Genetics 152, 853–867 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Schmidt, A., Beck, T., Koller, A., Kunz, J. & Hall, M.N. The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease. EMBO J. 17, 6924–6931 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Buescher, J.M. et al. A roadmap for interpreting 13C metabolite labeling patterns from cells. Curr. Opin. Biotechnol. 34, 189–201 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Valenzuela, L., Ballario, P., Aranda, C., Filetici, P. & González, A. Regulation of expression of GLT1, the gene encoding glutamate synthase in Saccharomyces cerevisiae. J. Bacteriol. 180, 3533–3540 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuang, Z. et al. High-temporal-resolution view of transcription and chromatin states across distinct metabolic states in budding yeast. Nat. Struct. Mol. Biol. 21, 854–863 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bender, T., Pena, G. & Martinou, J.C. Regulation of mitochondrial pyruvate uptake by alternative pyruvate carrier complexes. EMBO J. 34, 911–924 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Butow, R.A. & Avadhani, N.G. Mitochondrial signaling: the retrograde response. Mol. Cell 14, 1–15 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Komeili, A., Wedaman, K.P., O'Shea, E.K. & Powers, T. Mechanism of metabolic control: target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors. J. Cell Biol. 151, 863–878 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Small, W.C. et al. Enzymatic and metabolic studies on retrograde regulation mutants of yeast. Biochemistry 34, 5569–5576 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Kalderon, D., Roberts, B.L., Richardson, W.D. & Smith, A.E. A short amino acid sequence able to specify nuclear location. Cell 39, 499–509 (1984).

    Article  CAS  PubMed  Google Scholar 

  30. Smolina, V.S. & Bekker, M.L. Properties of 5-phosphoryl-1-pyrophosphate amidotransferase from the yeast Saccharomyces cerevisiae wild type and mutant with altered purine biosynthesis regulation. Biokhimiia 47, 162–167 (1982).

    CAS  PubMed  Google Scholar 

  31. MacGurn, J.A., Hsu, P.C., Smolka, M.B. & Emr, S.D. TORC1 regulates endocytosis via Npr1-mediated phosphoinhibition of a ubiquitin ligase adaptor. Cell 147, 1104–1117 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Godard, P. et al. Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 27, 3065–3086 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rai, R. et al. Nuclear Gln3 import is regulated by nitrogen catabolite repression whereas export is specifically regulated by glutamine. Genetics 201, 989–1016 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Beck, T. & Hall, M.N. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402, 689–692 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Durán, R.V. et al. Glutaminolysis activates Rag-mTORC1 signaling. Mol. Cell 47, 349–358 (2012).

    Article  PubMed  Google Scholar 

  36. Nicklin, P. et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136, 521–534 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jewell, J.L. et al. Differential regulation of mTORC1 by leucine and glutamine. Science 347, 194–198 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stracka, D., Jozefczuk, S., Rudroff, F., Sauer, U. & Hall, M.N. Nitrogen source activates TOR (target of rapamycin) complex 1 via glutamine and independently of Gtr/Rag proteins. J. Biol. Chem. 289, 25010–25020 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yerlikaya, S. et al. TORC1 and TORC2 work together to regulate ribosomal protein S6 phosphorylation in Saccharomyces cerevisiae. Mol. Biol. Cell 27, 397–409 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. González, A. et al. TORC1 promotes phosphorylation of ribosomal protein S6 via the AGC kinase Ypk3 in Saccharomyces cerevisiae. PLoS One 10, e0120250 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sullivan, L.B. et al. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 162, 552–563 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Birsoy, K. et al. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162, 540–551 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cardaci, S. et al. Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis. Nat. Cell Biol. 17, 1317–1326 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ben-Sahra, I., Hoxhaj, G., Ricoult, S.J.H., Asara, J.M. & Manning, B.D. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science 351, 728–733 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ben-Sahra, I., Howell, J.J., Asara, J.M. & Manning, B.D. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 339, 1323–1328 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Robitaille, A.M. et al. Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339, 1320–1323 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Longtine, M.S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Hoffman, C.S. & Winston, F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57, 267–272 (1987).

    Article  CAS  PubMed  Google Scholar 

  49. Castrillo, J.I., Hayes, A., Mohammed, S., Gaskell, S.J. & Oliver, S.G. An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry. Phytochemistry 62, 929–937 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Kern, S.E., Price-Whelan, A. & Newman, D.K. Extraction and measurement of NAD(P)+ and NAD(P)H. Methods Mol. Biol. 1149, 311–323 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH (R01GM094314), CPRIT (RP140655), and the Welch Foundation (I-1797 to B.P.T.). We thank Y.-S. Yang for assistance with illustrations.

Author information

Authors and Affiliations

Authors

Contributions

J.C., L.S., B.M.S., and B.P.T. conceived and designed the study. J.C., B.M.S., and L.S. conducted the experiments. L.S. first observed the ability of aspartate to rescue growth of GATOR1 (SEACIT) mutants. J.C. and B.P.T. wrote the manuscript.

Corresponding author

Correspondence to Benjamin P Tu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1 and 2, and Supplementary Figures 1–6 (PDF 4822 kb)

Life Sciences Reporting Summary (PDF 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Sutter, B., Shi, L. et al. GATOR1 regulates nitrogenic cataplerotic reactions of the mitochondrial TCA cycle. Nat Chem Biol 13, 1179–1186 (2017). https://doi.org/10.1038/nchembio.2478

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2478

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research