Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A homodimer interface without base pairs in an RNA mimic of red fluorescent protein

Abstract

Corn, a 28-nucleotide RNA, increases yellow fluorescence of its cognate ligand 3,5-difluoro-4-hydroxybenzylidene-imidazolinone-2-oxime (DFHO) by >400-fold. Corn was selected in vitro to overcome limitations of other fluorogenic RNAs, particularly rapid photobleaching. We now report the Corn–DFHO co-crystal structure, discovering that the functional species is a quasisymmetric homodimer. Unusually, the dimer interface, in which six unpaired adenosines break overall two-fold symmetry, lacks any intermolecular base pairs. The homodimer encapsulates one DFHO at its interprotomer interface, sandwiching it with a G-quadruplex from each protomer. Corn and the green-fluorescent Spinach RNA are structurally unrelated. Their convergent use of G-quadruplexes underscores the usefulness of this motif for RNA-induced small-molecule fluorescence. The asymmetric dimer interface of Corn could provide a basis for the development of mutants that only fluoresce as heterodimers. Such variants would be analogous to Split GFP, and may be useful for analyzing RNA co-expression or association, or for designing self-assembling RNA nanostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of Corn–DFHO complex.
Figure 2: Biophysical analysis of Corn–DFHO dimer.
Figure 3: Structure of Corn protomer.
Figure 4: Architecture and functional importance of the quasisymmetric DFHO binding site.
Figure 5: Comparison of chromophore binding and fluorescence activation by Spinach and Corn.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Song, W., Filonov, G.S. & Jaffrey, S.R. Imaging RNA polymerase III transcription dynamics using a photostable RNA-fluorophore complex. Nat. Chem. Biol. 13 http://dx.doi.org/10.1038/nchembio.2477 (2017).

  2. Ellington, A.D. & Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Gross, L.A., Baird, G.S., Hoffman, R.C., Baldridge, K.K. & Tsien, R.Y. The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc. Natl. Acad. Sci. USA 97, 11990–11995 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wall, M.A., Socolich, M. & Ranganathan, R. The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nat. Struct. Biol. 7, 1133–1138 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Yarbrough, D., Wachter, R.M., Kallio, K., Matz, M.V. & Remington, S.J. Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-A resolution. Proc. Natl. Acad. Sci. USA 98, 462–467 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baugh, C., Grate, D. & Wilson, C. 2.8 A crystal structure of the malachite green aptamer. J. Mol. Biol. 301, 117–128 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Paige, J.S., Wu, K.Y. & Jaffrey, S.R. RNA mimics of green fluorescent protein. Science 333, 642–646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dolgosheina, E.V. et al. RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking. ACS Chem. Biol. 9, 2412–2420 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Trachman, R.J.I. III et al. Structural basis for high-affinity fluorophore binding and activation by RNA Mango. Nat. Chem. Biol. 13, 807–813 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Day, R.N. & Davidson, M.W. The Fluorescent Protein Revolution (CRC Press, Boca Raton, 2014).

  11. Grate, D. & Wilson, C. Laser-mediated, site-specific inactivation of RNA transcripts. Proc. Natl. Acad. Sci. USA 96, 6131–6136 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, P.C. et al. Photochemical properties of Spinach and its use in selective imaging. Chem. Sci. 4, 2865–2873 (2013).

    Article  CAS  Google Scholar 

  13. Han, K.Y., Leslie, B.J., Fei, J., Zhang, J. & Ha, T. Understanding the photophysics of the spinach-DFHBI RNA aptamer-fluorogen complex to improve live-cell RNA imaging. J. Am. Chem. Soc. 135, 19033–19038 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Warner, K.D. et al. Structural basis for activity of highly efficient RNA mimics of green fluorescent protein. Nat. Struct. Mol. Biol. 21, 658–663 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Strack, R.L., Disney, M.D. & Jaffrey, S.R. A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA. Nat. Methods 10, 1219–1224 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Caspar, D.L.D. & Klug, A. Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol. 27, 1–24 (1962).

    Article  CAS  PubMed  Google Scholar 

  17. Gellert, M., Lipsett, M.N. & Davies, D.R. Helix formation by guanylic acid. Proc. Natl. Acad. Sci. USA 48, 2013–2018 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burge, S., Parkinson, G.N., Hazel, P., Todd, A.K. & Neidle, S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 34, 5402–5415 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ghosh, I., Hamilton, A.D. & Regan, L. Antiparallel leucine zipper-directed protein reassembly: application to the green fluorescent protein. J. Am. Chem. Soc. 122, 5658–5659 (2000).

    Article  CAS  Google Scholar 

  20. Shekhawat, S.S. & Ghosh, I. Split-protein systems: beyond binary protein-protein interactions. Curr. Opin. Chem. Biol. 15, 789–797 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Matthews, B.W. Solvent content of protein crystals. J. Mol. Biol. 33, 491–497 (1968).

    Article  CAS  PubMed  Google Scholar 

  22. Laughlan, G. et al. The high-resolution crystal structure of a parallel-stranded guanine tetraplex. Science 265, 520–524 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Job, P. Formation and stability of inorganic complexes in solution. Ann. Chim. 9, 113–203 (1928).

    CAS  Google Scholar 

  24. Dickerson, R.E. et al. Definitions and nomenclature of nucleic acid structure parameters. EMBO J. 8, 1–4 (1989).

    Article  Google Scholar 

  25. Goodsell, D.S. & Olson, A.J. Structural symmetry and protein function. Annu. Rev. Biophys. Biomol. Struct. 29, 105–153 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Jones, C.P. & Ferré-D'Amaré, A.R. RNA quaternary structure and global symmetry. Trends Biochem. Sci. 40, 211–220 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Howard, F.B. & Miles, H.T. Poly(inosinic acid) helices: essential chelation of alkali metal ions in the axial channel. Biochemistry 21, 6736–6745 (1982).

    Article  CAS  PubMed  Google Scholar 

  28. Williamson, J.R., Raghuraman, M.K. & Cech, T.R. Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell 59, 871–880 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Sen, D. & Gilbert, W. A sodium-potassium switch in the formation of four-stranded G4-DNA. Nature 344, 410–414 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Xu, S. et al. Thioflavin T as an efficient fluorescence sensor for selective recognition of RNA G-quadruplexes. Sci. Rep. 6, 24793 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ormö, M. et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395 (1996).

    Article  PubMed  Google Scholar 

  32. Yang, F., Moss, L.G. & Phillips, G.N. Jr. The molecular structure of green fluorescent protein. Nat. Biotechnol. 14, 1246–1251 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Huang, H. et al. A G-quadruplex-containing RNA activates fluorescence in a GFP-like fluorophore. Nat. Chem. Biol. 10, 686–691 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Westhof, E., Dumas, P. & Moras, D. Crystallographic refinement of yeast aspartic acid transfer RNA. J. Mol. Biol. 184, 119–145 (1985).

    Article  CAS  PubMed  Google Scholar 

  35. Marino, J.P., Gregorian, R.S. Jr., Csankovszki, G. & Crothers, D.M. Bent helix formation between RNA hairpins with complementary loops. Science 268, 1448–1454 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, J. & Ferré-D'Amaré, A.R. Co-crystal structure of a T-box riboswitch stem I domain in complex with its cognate tRNA. Nature 500, 363–366 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Grigg, J.C. & Ke, A. Structural determinants for geometry and information decoding of tRNA by T box leader RNA. Structure 21, 2025–2032 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Burke, J.E., Sashital, D.G., Zuo, X., Wang, Y.X. & Butcher, S.E. Structure of the yeast U2/U6 snRNA complex. RNA 18, 673–683 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Davis, J.H. et al. RNA helical packing in solution: NMR structure of a 30 kDa GAAA tetraloop-receptor complex. J. Mol. Biol. 351, 371–382 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Ennifar, E., Walter, P., Ehresmann, B., Ehresmann, C. & Dumas, P. Crystal structures of coaxially stacked kissing complexes of the HIV-1 RNA dimerization initiation site. Nat. Struct. Biol. 8, 1064–1068 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Szent-Gyorgyi, C. et al. Malachite green mediates homodimerization of antibody VL domains to form a fluorescent ternary complex with singular symmetric interfaces. J. Mol. Biol. 425, 4595–4613 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dong, J. et al. Isomerization in fluorescent protein chromophores involves addition/elimination. J. Am. Chem. Soc. 130, 14096–14098 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Shank, N.I., Pham, H.H., Waggoner, A.S. & Armitage, B.A. Twisted cyanines: a non-planar fluorogenic dye with superior photostability and its use in a protein-based fluoromodule. J. Am. Chem. Soc. 135, 242–251 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Leontis, N.B. & Westhof, E. Geometric nomenclature and classification of RNA base pairs. RNA 7, 499–512 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xiao, H., Edwards, T.E. & Ferré-D'Amaré, A.R. Structural basis for specific, high-affinity tetracycline binding by an in vitro evolved aptamer and artificial riboswitch. Chem. Biol. 15, 1125–1137 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Otwinowski, Z. & Minor, W. Processing of diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Chou, F.-C., Sripakdeevong, P., Dibrov, S.M., Hermann, T. & Das, R. Correcting pervasive errors in RNA crystallography through enumerative structure prediction. Nat. Methods 10, 74–76 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Konarev, P.V., Volkov, V.V., Sokolova, A.V., Koch, M.H.J. & Svergun, D.I. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 36, 1277–1282 (2003).

    Article  CAS  Google Scholar 

  53. Svergun, D.I., Bargerato, C. & Koch, M.H.J. CRYSOL - a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Crystallogr. 28, 768–773 (1995).

    Article  CAS  Google Scholar 

  54. Tsai, C., Smider, V., Hwang, B.J. & Chu, G. Electrophoretic mobility shift assays for protein-DNA complexes involved in DNA repair. Methods Mol. Biol. 920, 53–78 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the staff at beamlines 5.0.1 and 5.0.2 of the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, and beamline 24-ID-E of the Advanced Photon Source (APS), Argonne National Laboratory, for crystallographic data collection; the staff at APS beamline ID-12-B for SAXS; G. Piszczek (Biophysics Core, US National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH)) for analytical ultracentrifugation; D. Lee and R. Levine (NHLBI) for mass spectrometry; S. Bachas, M. Chen, C. Fagan, C. Jones, R. Trachman, M. Warner, and J. Zhang for discussions, and an anonymous referee for proposing the experiment in Supplementary Figure 3. This work was partly conducted at the ALS, on the Berkeley Center for Structural Biology Beamlines, and at the APS on the 24-ID-E (NE-CAT) and 12-ID-C beamlines, which are supported by the NIH. Use of ALS and APS was supported by the US Department of Energy. This work was supported in part by the NIH (R01 NS064516 S.R.J.), the NIH–Oxford–Cambridge Research Scholars Program (K.D.W.), and the intramural program of the NHLBI and NIH.

Author information

Authors and Affiliations

Authors

Contributions

A.R.F.-D. and S.R.J. conceived the project; W.S. and G.S.F. synthesized the chromophore and initial aptamers; K.D.W. designed and carried out crystallographic experiments; K.D.W. and L.S. performed biochemical and biophysical experiments, and K.D.W. and A.R.F.-D prepared the manuscript with input from all authors.

Corresponding author

Correspondence to Adrian R Ferré-D'Amaré.

Ethics declarations

Competing interests

S.R.J. is the co-founder of Lucerna Technologies and has equity in this company. Lucerna has licensed commercialization of technology related to Spinach and other RNA -flourophore complexes.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–5 and Supplementary Figures 1–8 (PDF 3211 kb)

Reporting Summary (PDF 129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warner, K., Sjekloća, L., Song, W. et al. A homodimer interface without base pairs in an RNA mimic of red fluorescent protein. Nat Chem Biol 13, 1195–1201 (2017). https://doi.org/10.1038/nchembio.2475

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2475

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing