Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A synergistic small-molecule combination directly eradicates diverse prion strain structures

Abstract

Safely eradicating prions, amyloids and preamyloid oligomers may ameliorate several fatal neurodegenerative disorders. Yet whether small-molecule drugs can directly antagonize the entire spectrum of distinct amyloid structures or 'strains' that underlie distinct disease states is unclear. Here, we investigated this issue using the yeast prion protein Sup35. We have established how epigallocatechin-3-gallate (EGCG) blocks synthetic Sup35 prionogenesis, eliminates preformed Sup35 prions and disrupts inter- and intramolecular prion contacts. Unexpectedly, these direct activities were strain selective, altered the repertoire of accessible infectious forms and facilitated emergence of a new prion strain that configured original, EGCG-resistant intermolecular contacts. In vivo, EGCG cured and prevented induction of susceptible, but not resistant strains, and elicited switching from susceptible to resistant forms. Importantly, 4,5-bis-(4-methoxyanilino)phthalimide directly antagonized EGCG-resistant prions and synergized with EGCG to eliminate diverse Sup35 prion strains. Thus, synergistic small-molecule combinations that directly eradicate complete strain repertoires likely hold considerable therapeutic potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of Sup35 prion assembly and chemical structure of EGCG.
Figure 2: EGCG inhibits assembly of select Sup35 prion strains.
Figure 3: EGCG prevents inter- and intramolecular contact formation of select Sup35 prion strains.
Figure 4: EGCG disrupts preformed inter- and intramolecular contacts of select Sup35 prion strains.
Figure 5: EGCG eliminates select Sup35 prion strains.
Figure 6: Combinations of DAPH-12 and EGCG prevent formation of multiple prion strains.
Figure 7: Combinations of DAPH-12 and EGCG remodel multiple prion strains.
Figure 8: EGCG and DAPH-12 synergize to cure various [PSI+] variants.

Similar content being viewed by others

References

  1. Nelson, R. & Eisenberg, D. Structural models of amyloid-like fibrils. Adv. Protein Chem. 73, 235–282 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Skovronsky, D.M., Lee, V.M.-Y. & Trojanowski, J.Q. Neurodegenerative diseases: new concepts of pathogenesis and their therapeutic implications. Annu. Rev. Pathol. 1, 151–170 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Prusiner, S.B. Prions. Proc. Natl. Acad. Sci. USA 95, 13363–13383 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Roberts, B.E. & Shorter, J. Escaping amyloid fate. Nat. Struct. Mol. Biol. 15, 544–546 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Wells, J.A. & McClendon, C.L. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450, 1001–1009 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Ehrnhoefer, D.E. et al. Redirecting aggregation pathways: small molecule-mediated conversion of amyloidogenic polypeptides in unstructured, off-pathway oligomers. Nat. Struct. Mol. Biol. 15, 558–566 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Ehrnhoefer, D.E. et al. Green tea (-)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington's disease models. Hum. Mol. Genet. 15, 2743–2751 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Gestwicki, J.E., Crabtree, G.R. & Graef, I.A. Harnessing chaperones to generate small-molecule inhibitors of amyloid beta aggregation. Science 306, 865–869 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Hammarstrom, P., Wiseman, R.L., Powers, E.T. & Kelly, J.W. Prevention of transthyretin amyloid disease by changing protein misfolding energetics. Science 299, 713–716 (2003).

    Article  PubMed  Google Scholar 

  10. Li, J., Zhu, M., Rajamani, S., Uversky, V.N. & Fink, A.L. Rifampicin inhibits alpha-synuclein fibrillation and disaggregates fibrils. Chem. Biol. 11, 1513–1521 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, H. et al. Direct and selective elimination of specific prions and amyloids by 4,5-dianilinophthalimide and analogs. Proc. Natl. Acad. Sci. USA 105, 7159–7164 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Legname, G. et al. Synthetic mammalian prions. Science 305, 673–676 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Petkova, A.T. et al. Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils. Science 307, 262–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Safar, J. et al. Eight prion strains have PrPSc molecules with different conformations. Nat. Med. 4, 1157–1165 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Tanaka, M., Chien, P., Naber, N., Cooke, R. & Weissman, J.S. Conformational variations in an infectious protein determine prion strain differences. Nature 428, 323–328 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Tessier, P.M. & Lindquist, S. Unraveling infectious structures, strain variants and species barriers for the yeast prion [PSI+]. Nat. Struct. Mol. Biol. 16, 598–605 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tribouillard, D. et al. Antiprion drugs as chemical tools to uncover mechanisms of prion propagation. Prion 1, 48–52 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Aguzzi, A. Staining, straining and restraining prions. Nat. Neurosci. 11, 1239–1240 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Castilla, J. et al. Crossing the species barrier by PrPSc replication in vitro generates unique infectious prions. Cell 134, 757–768 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kocisko, D.A. et al. New inhibitors of scrapie-associated prion protein formation in a library of 2000 drugs and natural products. J. Virol. 77, 10288–10294 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Trevitt, C.R. & Collinge, J. A systematic review of prion therapeutics in experimental models. Brain 129, 2241–2265 (2006).

    Article  PubMed  Google Scholar 

  22. Kocisko, D.A. et al. Comparison of protease-resistant prion protein inhibitors in cell cultures infected with two strains of mouse and sheep scrapie. Neurosci. Lett. 388, 106–111 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Balch, W.E., Morimoto, R.I., Dillin, A. & Kelly, J.W. Adapting proteostasis for disease intervention. Science 319, 916–919 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Mu, T.W. et al. Chemical and biological approaches synergize to ameliorate protein-folding diseases. Cell 134, 769–781 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shorter, J. & Lindquist, S. Prions as adaptive conduits of memory and inheritance. Nat. Rev. Genet. 6, 435–450 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Krishnan, R. & Lindquist, S.L. Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature 435, 765–772 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tessier, P.M. & Lindquist, S. Prion recognition elements govern nucleation, strain specificity and species barriers. Nature 447, 556–561 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Scheibel, T., Bloom, J. & Lindquist, S.L. The elongation of yeast prion fibers involves separable steps of association and conversion. Proc. Natl. Acad. Sci. USA 101, 2287–2292 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Scheibel, T. & Lindquist, S.L. The role of conformational flexibility in prion propagation and maintenance for Sup35p. Nat. Struct. Biol. 8, 958–962 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Serio, T.R. et al. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289, 1317–1321 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Shorter, J. & Lindquist, S. Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science 304, 1793–1797 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Mukhopadhyay, S., Krishnan, R., Lemke, E.A., Lindquist, S. & Deniz, A.A. A natively unfolded yeast prion monomer adopts an ensemble of collapsed and rapidly fluctuating structures. Proc. Natl. Acad. Sci. USA 104, 2649–2654 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shorter, J. & Lindquist, S. Destruction or potentiation of different prions catalyzed by similar Hsp104 remodeling activities. Mol. Cell 23, 425–438 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Scheibel, T., Kowal, A.S., Bloom, J.D. & Lindquist, S.L. Bidirectional amyloid fiber growth for a yeast prion determinant. Curr. Biol. 11, 366–369 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Toyama, B.H., Kelly, M.J., Gross, J.D. & Weissman, J.S. The structural basis of yeast prion strain variants. Nature 449, 233–237 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Derkatch, I.L., Chernoff, Y.O., Kushnirov, V.V., Inge-Vechtomov, S.G. & Liebman, S.W. Genesis and variability of [PSI+] prion factors in Saccharomyces cerevisiae. Genetics 144, 1375–1386 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tanaka, M., Collins, S.R., Toyama, B.H. & Weissman, J.S. The physical basis of how prion conformations determine strain phenotypes. Nature 442, 585–589 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Sawaya, M.R. et al. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447, 453–457 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Shewmaker, F., Wickner, R.B. & Tycko, R. Amyloid of the prion domain of Sup35p has an in-register parallel beta-sheet structure. Proc. Natl. Acad. Sci. USA 103, 19754–19759 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Diaz-Avalos, R., King, C.Y., Wall, J., Simon, M. & Caspar, D.L. Strain-specific morphologies of yeast prion amyloid fibrils. Proc. Natl. Acad. Sci. USA 102, 10165–10170 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. O'Nuallain, B. & Wetzel, R. Conformational Abs recognizing a generic amyloid fibril epitope. Proc. Natl. Acad. Sci. USA 99, 1485–1490 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Patino, M.M., Liu, J.J., Glover, J.R. & Lindquist, S. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273, 622–626 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Kryndushkin, D.S., Alexandrov, I.M., Ter-Avanesyan, M.D. & Kushnirov, V.V. Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J. Biol. Chem. 278, 49636–49643 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Kochneva-Pervukhova, N.V. et al. [PSI+] prion generation in yeast: characterization of the 'strain' difference. Yeast 18, 489–497 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Staszewski, S. et al. Efavirenz plus zidovudine and lamivudine, efavirenz plus indinavir, and indinavir plus zidovudine and lamivudine in the treatment of HIV-1 infection in adults. N. Engl. J. Med. 341, 1865–1873 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Burgess, M.R., Skaggs, B.J., Shah, N.P., Lee, F.Y. & Sawyers, C.L. Comparative analysis of two clinically active BCR-ABL kinase inhibitors reveals the role of conformation-specific binding in resistance. Proc. Natl. Acad. Sci. USA 102, 3395–3400 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Spilman, P. et al. A gamma-secretase inhibitor and quinacrine reduce prions and prevent dendritic degeneration in murine brains. Proc. Natl. Acad. Sci. USA 105, 10595–10600 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hennessy, E.J. & Buchwald, S.L. Synthesis of 4,5-dianilinophthalimide and related analogues for potential treatment of Alzheimer's disease via palladium-catalyzed amination. J. Org. Chem. 70, 7371–7375 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Trinks, U. et al. Dianilinophthalimides: potent and selective, ATP-competitive inhibitors of the EGF-receptor protein tyrosine kinase. J. Med. Chem. 37, 1015–1027 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Hennessy (Massachusetts Institute of Technology), S. Buchwald (Massachusetts Institute of Technology), R. Krishnan (Whitehead Institute for Biomedical Research), S. Lindquist (Whitehead Institute for Biomedical Research), J. Weissman (University of California San Francisco), R. Wetzel (University of Pittsburgh School of Medicine) and C. Glabe (University of California Irvine) for generous provision of reagents; J. Chan for preliminary in vivo experiments; and M. Lemmon, A. Gitler, S.B. Cullinan, N. Bonini and S.W. Englander for comments on the manuscript. This work was supported by US National Institutes of Health (NIH) training grant 2T32GM008275-21 (E.A.S), an NIH Director's New Innovator Award (DP2OD002177), an Ellison Medical Foundation New Scholar in Aging Award, an American Heart Association Scientist Development Grant, and University of Pennsylvania Institute on Aging and Alzheimer's Disease Core Center pilots (J.S.).

Author information

Authors and Affiliations

Authors

Contributions

B.E.R., M.L.D., H.W., C.C., N.P.L., E.A.S. and J.S. designed experiments, contributed key reagents, performed experiments and interpreted data. M.N.K. contributed key reagents. M.L.D. and J.S. wrote the manuscript.

Corresponding authors

Correspondence to Martin L Duennwald or James Shorter.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 2104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, B., Duennwald, M., Wang, H. et al. A synergistic small-molecule combination directly eradicates diverse prion strain structures. Nat Chem Biol 5, 936–946 (2009). https://doi.org/10.1038/nchembio.246

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.246

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing