Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structures of trimeric HIV envelope with entry inhibitors BMS-378806 and BMS-626529

Abstract

The HIV-1 envelope (Env) spike is a conformational machine that transitions between prefusion (closed, CD4- and CCR5-bound) and postfusion states to facilitate HIV-1 entry into cells. Although the prefusion closed conformation is a potential target for inhibition, development of small-molecule leads has been stymied by difficulties in obtaining structural information. Here, we report crystal structures at 3.8-Å resolution of an HIV-1-Env trimer with BMS-378806 and a derivative BMS-626529 for which a prodrug version is currently in Phase III clinical trials. Both lead candidates recognized an induced binding pocket that was mostly excluded from solvent and comprised of Env elements from a conserved helix and the β20–21 hairpin. In both structures, the β20–21 region assumed a conformation distinct from prefusion-closed and CD4-bound states. Together with biophysical and antigenicity characterizations, the structures illuminate the allosteric and competitive mechanisms by which these small-molecule leads inhibit CD4-induced structural changes in Env.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HIV-1-Env recognition by small-molecule entry inhibitor BMS-626529.
Figure 2: Detailed interactions of BMS-626529 with HIV-1 Env gp120.
Figure 3: Detailed interactions of BMS-378806 with HIV-1 Env gp120.
Figure 4: Induced-fit conformational changes.
Figure 5: Entry inhibition mechanism for BMS-378806 and BMS-626529 small molecules.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Lima, V.D. et al. Continued improvement in survival among HIV-infected individuals with newer forms of highly active antiretroviral therapy. AIDS 21, 685–692 (2007).

    Article  PubMed  Google Scholar 

  2. Marcus, J.L. et al. Narrowing the gap in life expectancy between HIV-infected and HIV-uninfected individuals with access to care. J. Acquir. Immune Defic. Syndr. 73, 39–46 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vittinghoff, E. et al. Combination antiretroviral therapy and recent declines in AIDS incidence and mortality. J. Infect. Dis. 179, 717–720 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Kwon, Y.D. et al. Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env. Nat. Struct. Mol. Biol. 22, 522–531 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wyatt, R. & Sodroski, J. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 280, 1884–1888 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Munro, J.B. et al. Conformational dynamics of single HIV-1 envelope trimers on the surface of native virions. Science 346, 759–763 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wild, C., Greenwell, T. & Matthews, T. A synthetic peptide from HIV-1 gp41 is a potent inhibitor of virus-mediated cell-cell fusion. AIDS Res. Hum. Retroviruses 9, 1051–1053 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Oldfield, V., Keating, G.M. & Plosker, G. Enfuvirtide: a review of its use in the management of HIV infection. Drugs 65, 1139–1160 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Dorr, P. et al. Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob. Agents Chemother. 49, 4721–4732 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu, X. et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329, 856–861 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang, J. et al. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature 491, 406–412 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Muster, T. et al. Cross-neutralizing activity against divergent human immunodeficiency virus type 1 isolates induced by the gp41 sequence ELDKWAS. J. Virol. 68, 4031–4034 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang, J. et al. Identification of a CD4-binding-site antibody to HIV that evolved near-pan neutralization breadth. Immunity 45, 1108–1121 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kwong, P.D. et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648–659 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao, Q. et al. Identification of N-phenyl-N′-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4. Virology 339, 213–225 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. LaLonde, J.M. et al. Structure-based design, synthesis, and characterization of dual hotspot small-molecule HIV-1 entry inhibitors. J. Med. Chem. 55, 4382–4396 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Madani, N. et al. Small-molecule CD4 mimics interact with a highly conserved pocket on HIV-1 gp120. Structure 16, 1689–1701 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang, C.C. et al. Scorpion-toxin mimics of CD4 in complex with human immunodeficiency virus gp120 crystal structures, molecular mimicry, and neutralization breadth. Structure 13, 755–768 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, T. et al. Discovery of 4-benzoyl-1-[(4-methoxy-1H- pyrrolo[2,3-b]pyridin-3-yl)oxoacetyl]-2- (R)-methylpiperazine (BMS-378806): a novel HIV-1 attachment inhibitor that interferes with CD4-gp120 interactions. J. Med. Chem. 46, 4236–4239 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Guo, Q. et al. Biochemical and genetic characterizations of a novel human immunodeficiency virus type 1 inhibitor that blocks gp120-CD4 interactions. J. Virol. 77, 10528–10536 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ho, H.T. et al. Envelope conformational changes induced by human immunodeficiency virus type 1 attachment inhibitors prevent CD4 binding and downstream entry events. J. Virol. 80, 4017–4025 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin, P.F. et al. A small molecule HIV-1 inhibitor that targets the HIV-1 envelope and inhibits CD4 receptor binding. Proc. Natl. Acad. Sci. USA 100, 11013–11018 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, T. et al. Inhibitors of human immunodeficiency virus type 1 (HIV-1) attachment. 5. An evolution from indole to azaindoles leading to the discovery of 1-(4-benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-488043), a drug candidate that demonstrates antiviral activity in HIV-1-infected subjects. J. Med. Chem. 52, 7778–7787 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Kadow, J., Wang, H.G. & Lin, P.F. Small-molecule HIV-1 gp120 inhibitors to prevent HIV-1 entry: an emerging opportunity for drug development. Curr. Opin. Investig. Drugs 7, 721–726 (2006).

    CAS  PubMed  Google Scholar 

  25. Nowicka-Sans, B. et al. In vitro antiviral characteristics of HIV-1 attachment inhibitor BMS-626529, the active component of the prodrug BMS-663068. Antimicrob. Agents Chemother. 56, 3498–3507 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brown, J. et al. Compartmental absorption modeling and site of absorption studies to determine feasibility of an extended-release formulation of an HIV-1 attachment inhibitor phosphate ester prodrug. J. Pharm. Sci. 102, 1742–1751 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Lalezari, J.P. et al. Safety and efficacy of the HIV-1 attachment inhibitor prodrug BMS-663068 in treatment-experienced individuals: 24 week results of AI438011, a phase 2b, randomised controlled trial. Lancet HIV 2, e427–e437 (2015).

    Article  PubMed  Google Scholar 

  28. Nettles, R.E. et al. Pharmacodynamics, safety, and pharmacokinetics of BMS-663068, an oral HIV-1 attachment inhibitor in HIV-1-infected subjects. J. Infect. Dis. 206, 1002–1011 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Ray, N. et al. Prediction of virological response and assessment of resistance emergence to the HIV-1 attachment inhibitor BMS-626529 during 8-day monotherapy with its prodrug BMS-663068. J. Acquir. Immune Defic. Syndr. 64, 7–15 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Zhou, N. et al. Genotypic correlates of susceptibility to HIV-1 attachment inhibitor BMS-626529, the active agent of the prodrug BMS-663068. J. Antimicrob. Chemother. 69, 573–581 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Pancera, M. et al. Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature 514, 455–461 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sanders, R.W. et al. A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies. PLoS Pathog. 9, e1003618 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Si, Z. et al. Small-molecule inhibitors of HIV-1 entry block receptor-induced conformational changes in the viral envelope glycoproteins. Proc. Natl. Acad. Sci. USA 101, 5036–5041 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Walker, L.M. et al. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477, 466–470 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang, J. et al. Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-gp120 interface. Nature 515, 138–142 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Strong, M. et al. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 103, 8060–8065 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Madani, N. et al. Localized changes in the gp120 envelope glycoprotein confer resistance to human immunodeficiency virus entry inhibitors BMS-806 and #155. J. Virol. 78, 3742–3752 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou, N. et al. In vivo patterns of resistance to the HIV attachment inhibitor BMS-488043. Antimicrob. Agents Chemother. 55, 729–737 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Schader, S.M. et al. HIV gp120 H375 is unique to HIV-1 subtype CRF01_AE and confers strong resistance to the entry inhibitor BMS-599793, a candidate microbicide drug. Antimicrob. Agents Chemother. 56, 4257–4267 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Herschhorn, A. et al. A broad HIV-1 inhibitor blocks envelope glycoprotein transitions critical for entry. Nat. Chem. Biol. 10, 845–852 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Herschhorn, A. et al. Release of gp120 restraints leads to an entry-competent intermediate state of the HIV-1 envelope glycoproteins. MBio 7, e01598–16 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pancera, M. et al. Structure of HIV-1 gp120 with gp41-interactive region reveals layered envelope architecture and basis of conformational mobility. Proc. Natl. Acad. Sci. USA 107, 1166–1171 (2010).

    Article  PubMed  Google Scholar 

  43. Langley, D.R. et al. Homology models of the HIV-1 attachment inhibitor BMS-626529 bound to gp120 suggest a unique mechanism of action. Proteins 83, 331–350 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Kong, R., Tan, J.J., Ma, X.H., Chen, W.Z. & Wang, C.X. Prediction of the binding mode between BMS-378806 and HIV-1 gp120 by docking and molecular dynamics simulation. Biochim. Biophys. Acta 1764, 766–772 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Teixeira, C., Serradji, N., Maurel, F. & Barbault, F. Docking and 3D-QSAR studies of BMS-806 analogs as HIV-1 gp120 entry inhibitors. Eur. J. Med. Chem. 44, 3524–3532 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Li, L., Chen, H., Zhao, R.N. & Han, J.G. The investigations on HIV-1 gp120 bound with BMS-488043 by using docking and molecular dynamics simulations. J. Mol. Model. 19, 905–917 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, Q. et al. Quaternary contact in the initial interaction of CD4 with the HIV-1 envelope trimer. Nat. Struct. Mol. Biol. 24, 370–378 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guttman, M. et al. CD4-induced activation in a soluble HIV-1 Env trimer. Structure 22, 974–984 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Da, L.T., Quan, J.M. & Wu, Y.D. Understanding the binding mode and function of BMS-488043 against HIV-1 viral entry. Proteins 79, 1810–1819 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Shrivastava, I.H., Wendel, K. & LaLonde, J.M. Spontaneous rearrangement of the β20/β21 strands in simulations of unliganded HIV-1 glycoprotein, gp120. Biochemistry 51, 7783–7793 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Li, M. et al. Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies. J. Virol. 79, 10108–10125 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Seaman, M.S. et al. Tiered categorization of a diverse panel of HIV-1 Env pseudoviruses for assessment of neutralizing antibodies. J. Virol. 84, 1439–1452 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Weiss, M.S. Global indicators of X-ray data quality. J. Appl. Crystallogr. 34, 130–135 (2001).

    Article  CAS  Google Scholar 

  55. Karplus, P.A. & Diederichs, K. Linking crystallographic model and data quality. Science 336, 1030–1033 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  57. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed  Google Scholar 

  58. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Davis, I.W., Murray, L.W., Richardson, J.S. & Richardson, D.C. MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res. 32, W615–W619 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. DeLano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, CA, 2002).

Download references

Acknowledgements

We thank J. Stuckey for assistance with figures, members of Structural Biology and Structural Bioinformatics Core Sections, Vaccine Research Center for discussions and comments on the manuscript. We thank J. Baalwa (University of Alabama at Birmingham), D. Ellenberger (National Cancer Institute, NIH), F. Gao (Duke University), B. Hahn (University of Pennsylvania), K. Hong (Chinese Center for Disease Control and Prevention), J. Kim (The International Vaccine Institute), F. McCutchan (Military HIV Research Program), D. Montefiori (Duke University), L. Morris (National Institute of Communicable Diseases), J. Overbaugh (Fred Hutchison Cancer Research Center), E. Sanders-Buell (Military HIV Research Program), G. Shaw (University of Pennsylvania), R. Swanstrom (University of North Carolina at Chapel Hill), M. Thomson (Instituto de Salud Carlos III), S. Tovanabutra (Military HIV Research Program), C. Williamson (University of Cape Town) and L. Zhang (China Medical University Shenyang) for contributing the HIV-1 envelope plasmids used in our neutralization panel. We thank D. Burton (The Scripps Research Institute) and M. Feinberg (International AIDS Vaccine Initiative) for antibody PGT122 and M. Connors (National Institute of Allergy and Infectious Diseases, NIH) for antibody 35O22 used in structural analysis. Funding was provided by the Intramural Research Program of the Vaccine Research Center, National Institute of Allergy and Infectious Diseases, the Intramural AIDS Targeted Antiretroviral Program, the National Institute of General Medical Sciences, National Institutes of Health (J.S.), the National Science Foundation MCB-1157506 (E.F.) and the National Institutes of Health GM56550 (E.F.). Use of sector 22 (Southeast Region Collaborative Access team) at the Advanced Photon Source was supported by the US Department of Energy, Basic Energy Sciences, Office of Science, under contract no. W-31-109-Eng-38.

Author information

Authors and Affiliations

Authors

Contributions

M.P. determined the structures with assistance from Y.-T.L., G.-Y.C., D.I.S., D.R.L. and P.D.K. T.B. and G.-Y.C. assisted in resistance analysis. S.N. and A.B.M. performed antigenic analyses. S.O'D., R.T.B., M.K.L. and J.R.M. performed neutralization experiments. A.S. and E.F. performed isothermal titration calorimetry experiments. A.D. expressed proteins, and H.G. and D.I.S. purified proteins. R.R. performed sequence entropy analysis. A.F., A.H., N.M. and J.S. contributed mutagenesis analyses and competition analysis with CD4. M.P. and P.D.K. analyzed the data and wrote the paper, with contributions from J.S. and D.R.L.

Corresponding author

Correspondence to Peter D Kwong.

Ethics declarations

Competing interests

D.R.L. owns stock in Bristol-Myers Squibb.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–7 and Supplementary Figures 1–6. (PDF 2811 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pancera, M., Lai, YT., Bylund, T. et al. Crystal structures of trimeric HIV envelope with entry inhibitors BMS-378806 and BMS-626529. Nat Chem Biol 13, 1115–1122 (2017). https://doi.org/10.1038/nchembio.2460

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2460

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing