Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An artificial transport metabolon facilitates improved substrate utilization in yeast

Abstract

Efficient substrate utilization is the first and most important prerequisite for economically viable production of biofuels and chemicals by microbial cell factories. However, production rates and yields are often compromised by low transport rates of substrates across biological membranes and their diversion to competing pathways. This is especially true when common chassis organisms are engineered to utilize nonphysiological feedstocks. Here, we addressed this problem by constructing an artificial complex between an endogenous sugar transporter and a heterologous xylose isomerase in Saccharomyces cerevisiae. Direct feeding of the enzyme through the transporter resulted in acceleration of xylose consumption and substantially diminished production of xylitol as an undesired side product, with a concomitant increase in the production of ethanol. This underlying principle could also likely be implemented in other biotechnological applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Xylose utilization pathway in engineered yeast.
Figure 2: Fusion of Gal2 and XI with protein–protein interaction domains.
Figure 3: Colocalization of Gal2 and XI in scaffold-mediated complexes.
Figure 4: Redirection of the metabolic flux by Gal2–XI complexes.
Figure 5: Dependence of xylose uptake velocities on the complex formation.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Srere, P.A. Complexes of sequential metabolic enzymes. Annu. Rev. Biochem. 56, 89–124 (1987).

    CAS  PubMed  Google Scholar 

  2. Srere, P.A. Macromolecular interactions: tracing the roots. Trends Biochem. Sci. 25, 150–153 (2000).

    CAS  PubMed  Google Scholar 

  3. Castellana, M. et al. Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nat. Biotechnol. 32, 1011–1018 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Knighton, D.R. et al. Structure of and kinetic channelling in bifunctional dihydrofolate reductase-thymidylate synthase. Nat. Struct. Biol. 1, 186–194 (1994).

    CAS  PubMed  Google Scholar 

  5. Zhou, Z.H., McCarthy, D.B., O'Connor, C.M., Reed, L.J. & Stoops, J.K. The remarkable structural and functional organization of the eukaryotic pyruvate dehydrogenase complexes. Proc. Natl. Acad. Sci. USA 98, 14802–14807 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Good, M.C., Zalatan, J.G. & Lim, W.A. Scaffold proteins: hubs for controlling the flow of cellular information. Science 332, 680–686 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Graham, J.W. et al. Glycolytic enzymes associate dynamically with mitochondria in response to respiratory demand and support substrate channeling. Plant Cell 19, 3723–3738 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Araiza-Olivera, D. et al. A glycolytic metabolon in Saccharomyces cerevisiae is stabilized by F-actin. FEBS J. 280, 3887–3905 (2013).

    CAS  PubMed  Google Scholar 

  9. Bauler, P., Huber, G., Leyh, T. & McCammon, J.A. Channeling by proximity: The catalytic advantages of active site colocalization using brownian dynamics. J. Phys. Chem. Lett. 1, 1332–1335 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Moraes, T.F. & Reithmeier, R.A.F. Membrane transport metabolons. Biochim. Biophys. Acta 1818, 2687–2706 (2012).

    CAS  PubMed  Google Scholar 

  11. Meadow, N.D., Fox, D.K. & Roseman, S. The bacterial phosphoenolpyruvate: glycose phosphotransferase system. Annu. Rev. Biochem. 59, 497–542 (1990).

    CAS  PubMed  Google Scholar 

  12. Vince, J.W. & Reithmeier, R.A. Carbonic anhydrase II binds to the carboxyl terminus of human band 3, the erythrocyte C1-/HCO3- exchanger. J. Biol. Chem. 273, 28430–28437 (1998).

    CAS  PubMed  Google Scholar 

  13. Sterling, D., Reithmeier, R.A. & Casey, J.R. A transport metabolon. Functional interaction of carbonic anhydrase II and chloride/bicarbonate exchangers. J. Biol. Chem. 276, 47886–47894 (2001).

    CAS  PubMed  Google Scholar 

  14. Chen, A.H. & Silver, P.A. Designing biological compartmentalization. Trends Cell Biol. 22, 662–670 (2012).

    CAS  PubMed  Google Scholar 

  15. Lee, H., DeLoache, W.C. & Dueber, J.E. Spatial organization of enzymes for metabolic engineering. Metab. Eng. 14, 242–251 (2012).

    CAS  PubMed  Google Scholar 

  16. Ljungcrantz, P. et al. Construction of an artificial bifunctional enzyme, beta-galactosidase/galactose dehydrogenase, exhibiting efficient galactose channeling. Biochemistry 28, 8786–8792 (1989).

    CAS  PubMed  Google Scholar 

  17. Tian, L. & Dixon, R.A. Engineering isoflavone metabolism with an artificial bifunctional enzyme. Planta 224, 496–507 (2006).

    CAS  PubMed  Google Scholar 

  18. Iturrate, L., Sánchez-Moreno, I., Oroz-Guinea, I., Pérez-Gil, J. & García-Junceda, E. Preparation and characterization of a bifunctional aldolase/kinase enzyme: a more efficient biocatalyst for C-C bond formation. Chemistry 16, 4018–4030 (2010).

    CAS  PubMed  Google Scholar 

  19. Kirby, J. et al. Enhancing Terpene yield from sugars via novel routes to 1-deoxy-D-xylulose 5-phosphate. Appl. Environ. Microbiol. 81, 130–138 (2015).

    PubMed  Google Scholar 

  20. Dueber, J.E. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27, 753–759 (2009).

    CAS  PubMed  Google Scholar 

  21. Oreb, M., Dietz, H., Farwick, A. & Boles, E. Novel strategies to improve co-fermentation of pentoses with D-glucose by recombinant yeast strains in lignocellulosic hydrolysates. Bioengineered 3, 347–351 (2012).

    PubMed  PubMed Central  Google Scholar 

  22. Kötter, P., Amore, R., Hollenberg, C.P. & Ciriacy, M. Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr. Genet. 18, 493–500 (1990).

    PubMed  Google Scholar 

  23. Kuyper, M. et al. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res. 4, 69–78 (2003).

    CAS  PubMed  Google Scholar 

  24. Brat, D., Boles, E. & Wiedemann, B. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 75, 2304–2311 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Demeke, M.M. et al. Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production. Biotechnol. Biofuels 6, 120 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuyper, M. et al. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res. 5, 399–409 (2005).

    CAS  PubMed  Google Scholar 

  27. Demeke, M.M. et al. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol. Biofuels 6, 89 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Linck, A. et al. On the role of GAPDH isoenzymes during pentose fermentation in engineered Saccharomyces cerevisiae. FEMS Yeast Res. 14, 389–398 (2014).

    CAS  PubMed  Google Scholar 

  29. Tanino, T. et al. Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation. Appl. Microbiol. Biotechnol. 88, 1215–1221 (2010).

    CAS  PubMed  Google Scholar 

  30. Asbóth, B. & Náray-Szabó, G. Mechanism of action of D-xylose isomerase. Curr. Protein Pept. Sci. 1, 237–254 (2000).

    PubMed  Google Scholar 

  31. Farwick, A., Bruder, S., Schadeweg, V., Oreb, M. & Boles, E. ENGINEERING OF YEAST HEXOSE TRANSPORTERS TO TRANSPORT D -xylose without inhibition by D -glucose. Proc. Natl. Acad. Sci. USA 111, 5159–5164 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Reinke, A.W., Grant, R.A. & Keating, A.E. A synthetic coiled-coil interactome provides heterospecific modules for molecular engineering. J. Am. Chem. Soc. 132, 6025–6031 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Thompson, K.E., Bashor, C.J., Lim, W.A. & Keating, A.E. SYNZIP protein interaction toolbox: in vitro and in vivo specifications of heterospecific coiled-coil interaction domains. ACS Synth. Biol. 1, 118–129 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, Y. & Yu, O. Synthetic scaffolds increased resveratrol biosynthesis in engineered yeast cells. J. Biotechnol. 157, 258–260 (2012).

    CAS  PubMed  Google Scholar 

  35. Zettl, M. & Way, M. The WH1 and EVH1 domains of WASP and Ena/VASP family members bind distinct sequence motifs. Curr. Biol. 12, 1617–1622 (2002).

    CAS  PubMed  Google Scholar 

  36. Karim, A.S., Curran, K.A. & Alper, H.S. Characterization of plasmid burden and copy number in Saccharomyces cerevisiae for optimization of metabolic engineering applications. FEMS Yeast Res. 13, 107–116 (2013).

    CAS  PubMed  Google Scholar 

  37. Roy, A., Dement, A.D., Cho, K.H. & Kim, J.-H. Assessing glucose uptake through the yeast hexose transporter 1 (Hxt1). PLoS One 10, e0121985 (2015).

    PubMed  PubMed Central  Google Scholar 

  38. Wieczorke, R., Dlugai, S., Krampe, S. & Boles, E. Characterisation of mammalian GLUT glucose transporters in a heterologous yeast expression system. Cell. Physiol. Biochem. 13, 123–134 (2003).

    CAS  PubMed  Google Scholar 

  39. Smirnova, I. et al. Outward-facing conformers of LacY stabilized by nanobodies. Proc. Natl. Acad. Sci. USA 111, 18548–18553 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Matsushika, A., Inoue, H., Kodaki, T. & Sawayama, S. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl. Microbiol. Biotechnol. 84, 37–53 (2009).

    CAS  PubMed  Google Scholar 

  41. Sowah, D. & Casey, J.R. An intramolecular transport metabolon: fusion of carbonic anhydrase II to the COOH terminus of the Cl(-)/HCO(3)(-)exchanger, AE1. Am. J. Physiol. Cell Physiol. 301, C336–C346 (2011).

    CAS  PubMed  Google Scholar 

  42. Kuyper, M. et al. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 5, 925–934 (2005).

    CAS  PubMed  Google Scholar 

  43. Aguilera, J. & Prieto, J.A. The Saccharomyces cerevisiae aldose reductase is implied in the metabolism of methylglyoxal in response to stress conditions. Curr. Genet. 39, 273–283 (2001).

    CAS  PubMed  Google Scholar 

  44. Wieczorke, R. et al. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett. 464, 123–128 (1999).

    CAS  PubMed  Google Scholar 

  45. Gietz, R.D. & Schiestl, R.H. Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 1–4 (2007).

    CAS  PubMed  Google Scholar 

  46. Bruder, S., Reifenrath, M., Thomik, T., Boles, E. & Herzog, K. Parallelised online biomass monitoring in shake flasks enables efficient strain and carbon source dependent growth characterisation of Saccharomyces cerevisiae. Microb. Cell Fact. 15, 127 (2016).

    PubMed  PubMed Central  Google Scholar 

  47. Oldenburg, K.R., Vo, K.T., Michaelis, S. & Paddon, C. Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res. 25, 451–452 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Brat, D., Weber, C., Lorenzen, W., Bode, H.B. & Boles, E. Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae. Biotechnol. Biofuels 5, 65 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Horak, J., Regelmann, J. & Wolf, D.H. Two distinct proteolytic systems responsible for glucose-induced degradation of fructose-1,6-bisphosphatase and the Gal2p transporter in the yeast Saccharomyces cerevisiae share the same protein components of the glucose signaling pathway. J. Biol. Chem. 277, 8248–8254 (2002).

    CAS  PubMed  Google Scholar 

  50. Iancu, C.V., Zamoon, J., Woo, S.B., Aleshin, A. & Choe, J.Y. Crystal structure of a glucose/H+ symporter and its mechanism of action. Proc. Natl. Acad. Sci. USA 110, 17862–17867 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support by German Federal Ministry of Food, Agriculture and Consumer Protection following a decision of German Bundestag (to E.B. and M.O.; project ECO-FERM, FKZ: 22031811) is gratefully acknowledged. We would like to thank D. Wolf (University of Stuttgart) for kindly providing Gal2 antibodies. We are grateful to C. Hiesl, C. Hannig and S. Scholl for their contribution to the experimental work. We thank J. Tripp and W. Generoso for stimulating discussions. T. Bionda is acknowledged for critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.O. conceived and supervised the project. E.B. co-supervised the project and provided resources. T.T., I.W., E.B. and M.O. contributed to experimental design. T.T. performed the experiments. T.T. and M.O. analyzed the data. J.C. performed structure modeling. M.O. wrote the manuscript, which was edited and approved by all authors.

Corresponding author

Correspondence to Mislav Oreb.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1 and 2, and Supplementary Figures 1–8 (PDF 1648 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomik, T., Wittig, I., Choe, Jy. et al. An artificial transport metabolon facilitates improved substrate utilization in yeast. Nat Chem Biol 13, 1158–1163 (2017). https://doi.org/10.1038/nchembio.2457

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2457

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research