Abstract
Biodiversity, or the relative abundance of species, measures the persistence of an ecosystem. To better understand its modulation, we analyzed the spatial and temporal dynamics of a synthetic, chemical-mediated ecosystem that consisted of two engineered Escherichia coli populations. Depending on the specific experimental conditions implemented, the dominant interaction between the two populations could be competition for nutrients or predation due to engineered communication. While the two types of interactions resulted in different spatial patterns, they demonstrated a common trend in terms of the modulation of biodiversity. Specifically, biodiversity decreased with increasing cellular motility if the segregation distance between the two populations was comparable to the length scale of the chemical-mediated interaction. Otherwise, biodiversity was insensitive to cellular motility. Our results suggested a simple criterion for predicting the modulation of biodiversity by habitat partitioning and cellular motility in chemical-mediated ecosystems.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Survival of the weakest in non-transitive asymmetric interactions among strains of E. coli
Nature Communications Open Access 27 November 2020
-
A unifying framework for interpreting and predicting mutualistic systems
Nature Communications Open Access 16 January 2019
-
Computing with biological switches and clocks
Natural Computing Open Access 01 June 2018
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Falkowski, P.G., Fenchel, T. & Delong, E.F. The microbial engines that drive Earth's biogeochemical cycles. Science 320, 1034–1039 (2008).
Strom, S.L. Microbial ecology of ocean biogeochemistry: a community perspective. Science 320, 1043–1045 (2008).
Muyzer, G. & Stams, A.J. The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol. 6, 441–454 (2008).
Jia, W., Li, H., Zhao, L. & Nicholson, J.K. Gut microbiota: a potential new territory for drug targeting. Nat. Rev. Drug Discov. 7, 123–129 (2008).
Dethlefsen, L., McFall-Ngai, M. & Relman, D.A. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449, 811–818 (2007).
Brenner, K., You, L. & Arnold, F.H. Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol. 26, 483–489 (2008).
Peet, R. The measurement of species diversity. Annu. Rev. Ecol. Syst. 5, 285–307 (1974).
Jessup, C.M. et al. Big questions, small worlds: microbial model systems in ecology. Trends Ecol. Evol. 19, 189–197 (2004).
Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).
Ley, R.E., Peterson, D.A. & Gordon, J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124, 837–848 (2006).
Dykhuizen, D.E. Santa Rosalia revisited: why are there so many species of bacteria? Antonie Van Leeuwenhoek 73, 25–33 (1998).
Staley, J.T. & Reysenbach, A.-L. (eds.) Biodiversity of Microbial Life: Foundation of Earth's Biosphere (Wiley-Liss, New York, 2001).
Ward, D.M., Ferris, M.J., Nold, S.C. & Bateson, M.M. A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol. Mol. Biol. Rev. 62, 1353–1370 (1998).
Horner-Devine, M.C., Carney, K.M. & Bohannan, B.J. An ecological perspective on bacterial biodiversity. Proc. Biol. Sci. 271, 113–122 (2004).
Tilman, D. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80, 1455–1474 (1999).
Chesson, P. & Kuang, J.J. The interaction between predation and competition. Nature 456, 235–238 (2008).
Martin, M.O. Predatory prokaryotes: an emerging research opportunity. J. Mol. Microbiol. Biotechnol. 4, 467–477 (2002).
Jurkevitch, E. Predatory behaviors in bacteria - diversity and transitions. Microbe 2, 67–73 (2007).
Guerrero, R. et al. Predatory prokaryotes: predation and primary consumption evolved in bacteria. Proc. Natl. Acad. Sci. USA 83, 2138–2142 (1986).
Esteve, I., Gaju, N., Mir, J. & Guerrero, R. Comparison of techniques to determine the abundance of predatory bacteria attacking chromatiaceae. FEMS Microbiol. Lett. 86, 205–211 (1992).
Lambert, C., Morehouse, K.A., Chang, C.Y. & Sockett, R.E. Bdellovibrio: growth and development during the predatory cycle. Curr. Opin. Microbiol. 9, 639–644 (2006).
Shou, W., Ram, S. & Vilar, J.M. Synthetic cooperation in engineered yeast populations. Proc. Natl. Acad. Sci. USA 104, 1877–1882 (2007).
Hart, B.A. & Zahler, S.A. Lytic enzyme produced by Myxococcus xanthus. J. Bacteriol. 92, 1632–1637 (1966).
Berleman, J.E., Chumley, T., Cheung, P. & Kirby, J.R. Rippling is a predatory behavior in Myxococcus xanthus. J. Bacteriol. 188, 5888–5895 (2006).
Pham, V.D., Shebelut, C.W., Diodati, M.E., Bull, C.T. & Singer, M. Mutations affecting predation ability of the soil bacterium Myxococcus xanthus. Microbiology 151, 1865–1874 (2005).
Keller, L. & Surette, M.G. Communication in bacteria: an ecological and evolutionary perspective. Nat. Rev. Microbiol. 4, 249–258 (2006).
Battin, T.J. et al. Microbial landscapes: new paths to biofilm research. Nat. Rev. Microbiol. 5, 76–81 (2007).
Pohnert, G., Steinke, M. & Tollrian, R. Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions. Trends Ecol. Evol. 22, 198–204 (2007).
Dicke, M. & Sabelis, M.W. Infochemical terminology: based on cost-benefit analysis rather than origin of compounds? Funct. Ecol. 2, 131–139 (1988).
Ianora, A. et al. New trends in marine chemical ecology. Estuaries Coasts 29, 531–551 (2006).
Waters, C.M. & Bassler, B.L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005).
Whittaker, R.H. & Feeny, P.P. Allelochemicals: chemical interactions between species. Science 171, 757–770 (1971).
Weissburg, M.J., Ferner, M.C., Pisut, D.P. & Smee, D.L. Ecological consequences of chemically mediated prey perception. J. Chem. Ecol. 28, 1953–1970 (2002).
Shiner, E.K., Rumbaugh, K.P. & Williams, S.C. Inter-kingdom signaling: deciphering the language of acyl homoserine lactones. FEMS Microbiol. Rev. 29, 935–947 (2005).
Kerr, B., Riley, M.A., Feldman, M.W. & Bohannan, B.J. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418, 171–174 (2002).
Reichenbach, T., Mobilia, M. & Frey, E. Mobility promotes and jeopardizes biodiversity in rock-paper-scissors games. Nature 448, 1046–1049 (2007).
Balagadde, F.K. et al. A synthetic Escherichia coli predator-prey ecosystem. Mol. Syst. Biol. 4, 187 (2008).
Weber, W., Daoud-El Baba, M. & Fussenegger, M. Synthetic ecosystems based on airborne inter- and intrakingdom communication. Proc. Natl. Acad. Sci. USA 104, 10435–10440 (2007).
Kosinski, M.J., Rinas, U. & Bailey, J.E. Isopropyl-β-D-thiogalactopyranoside influences the metabolism of Escherichia coli. Appl. Microbiol. Biotechnol. 36, 782–784 (1992).
Lauffenburger, D.A. Quantitative studies of bacterial chemotaxis and microbial population dynamics. Microb. Ecol. 22, 175–185 (1991).
Kelly, F.X., Dapsis, K.J. & Lauffenburger, D.A. Effect of bacterial chemotaxis on dynamics of microbial competition. Microb. Ecol. 16, 115–131 (1988).
Woodward, D.E. et al. Spatio-temporal patterns generated by Salmonella typhimurium. Biophys. J. 68, 2181–2189 (1995).
Keller, E.F. & Segel, L.A. Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theor. Biol. 30, 235–248 (1971).
Hastings, A. Transients: the key to long-term ecological understanding? Trends Ecol. Evol. 19, 39–45 (2004).
Tilman, D. & Kareiva, P. Spatial Ecology (Princeton University Press, Princeton, New Jersey, 1997).
Rosenzweig, M.L. Species Diversity in Space and Time (Cambridge University Press, Cambridge, UK, 1995).
Stolp, H. Microbial Ecology: Organisms, Habitats, Activities (Cambridge University Press, Cambridge, UK, 1988).
Hastings, A. Spatial heterogeneity and the stability of predator-prey systems. Theor. Popul. Biol. 12, 37–48 (1977).
Kim, H.J., Boedicker, J.Q., Choi, J.W. & Ismagilov, R.F. Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc. Natl. Acad. Sci. USA 105, 18188–18193 (2008).
Brenner, K., Karig, D.K., Weiss, R. & Arnold, F.H. Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proc. Natl. Acad. Sci. USA 104, 17300–17304 (2007).
Acknowledgements
We thank F. Yuan for access to a Kodak fluorescence image station and software (Comsol Multiphysics); F. Arnold (California Institute of Technology) and C. Collins (Rensselaer Polytechnic Institute) for sharing genetic constructs; D. Schaeffer for suggestions on modeling; C. Tan for commenting on the manuscript; and other You lab members for discussions. This study was supported by the US National Institutes of Health (5R01CA118486), a David and Lucile Packard Fellowship (L.Y.), a DuPont Young Professor Award (L.Y.), a US National Institute of General Medical Sciences Biotechnology Predoctoral Center for Biomolecular and Tissue Engineering Fellowship (to S.P.) and a Duke University Pratt Fellowship for undergraduate research (to M.G.). We thank the anonymous reviewers for critical and constructive suggestions.
Author information
Authors and Affiliations
Contributions
H.S. and L.Y. conceived the project; H.S., S.P. and M.G. performed the experiments; H.S. performed the mathematical modeling; H.S., S.P. and L.Y. analyzed the data; H.S., S.P. and L.Y. wrote the paper.
Corresponding author
Supplementary information
Supplementary Text and Figures
Supplementary Methods and Supplementary Results (PDF 2253 kb)
Rights and permissions
About this article
Cite this article
Song, H., Payne, S., Gray, M. et al. Spatiotemporal modulation of biodiversity in a synthetic chemical-mediated ecosystem. Nat Chem Biol 5, 929–935 (2009). https://doi.org/10.1038/nchembio.244
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchembio.244
This article is cited by
-
Modulation of microbial community dynamics by spatial partitioning
Nature Chemical Biology (2022)
-
Bacterial coexistence driven by motility and spatial competition
Nature (2020)
-
Predictive biology: modelling, understanding and harnessing microbial complexity
Nature Reviews Microbiology (2020)
-
Survival of the weakest in non-transitive asymmetric interactions among strains of E. coli
Nature Communications (2020)
-
Quorum sensing for population-level control of bacteria and potential therapeutic applications
Cellular and Molecular Life Sciences (2020)