Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Copper import in Escherichia coli by the yersiniabactin metallophore system

Abstract

Copper plays a dual role as a nutrient and a toxin during bacterial infections. While uropathogenic Escherichia coli (UPEC) strains can use the copper-binding metallophore yersiniabactin (Ybt) to resist copper toxicity, Ybt also converts bioavailable copper to Cu(II)–Ybt in low-copper conditions. Although E. coli have long been considered to lack a copper import pathway, we observed Ybt-mediated copper import in UPEC using canonical Fe(III)–Ybt transport proteins. UPEC removed copper from Cu(II)–Ybt with subsequent re-export of metal-free Ybt to the extracellular space. Copper released through this process became available to an E. coli cuproenzyme (the amine oxidase TynA), linking this import pathway to a nutrient acquisition function. Ybt-expressing E. coli thus engage in nutritional passivation, a strategy of minimizing a metal ion's toxicity while preserving its nutritional availability. Copper acquisition through this process may contribute to the marked virulence defect of Ybt-transport-deficient UPEC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cu(II)–Ybt formation during low-copper UPEC growth.
Figure 2: UPEC convert Cu(II)–Ybt and Fe(III)–Ybt to metal-free Ybt.
Figure 3: Requirements for Ybt complex uptake and dissociation.
Figure 4: Reductive dissociation of Cu(II)–Ybt and Fe(III)–Ybt.
Figure 5: Cu(II)–Ybt as a nutritional copper source in E. coli.
Figure 6: Model of Cu(II)–Ybt transport, utilization and recycling.

Similar content being viewed by others

References

  1. Hood, M.I. & Skaar, E.P. Nutritional immunity: transition metals at the pathogen-host interface. Nat. Rev. Microbiol. 10, 525–537 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Chaturvedi, K.S. & Henderson, J.P. Pathogenic adaptations to host-derived antibacterial copper. Front. Cell. Infect. Microbiol. 4, 3 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Chaturvedi, K.S., Hung, C.S., Crowley, J.R., Stapleton, A.E. & Henderson, J.P. The siderophore yersiniabactin binds copper to protect pathogens during infection. Nat. Chem. Biol. 8, 731–736 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chaturvedi, K.S. et al. Cupric yersiniabactin is a virulence-associated superoxide dismutase mimic. ACS Chem. Biol. 9, 551–561 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Greenberg, S.B., Harris, D., Giles, P., Martin, R.R. & Wallace, R.J. Jr. Inhibition of Chlamydia trachomatis growth in McCoy, HeLa, and human prostate cells by zinc. Antimicrob. Agents Chemother. 27, 953–957 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Henderson, J.P. et al. Quantitative metabolomics reveals an epigenetic blueprint for iron acquisition in uropathogenic Escherichia coli. PLoS Pathog. 5, e1000305 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Perry, R.D., Balbo, P.B., Jones, H.A., Fetherston, J.D. & DeMoll, E. Yersiniabactin from Yersinia pestis: biochemical characterization of the siderophore and its role in iron transport and regulation. Microbiology 145, 1181–1190 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Fetherston, J.D., Bearden, S.W. & Perry, R.D. YbtA, an AraC-type regulator of the Yersinia pestis pesticin/yersiniabactin receptor. Mol. Microbiol. 22, 315–325 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Fetherston, J.D., Bertolino, V.J. & Perry, R.D. YbtP and YbtQ: two ABC transporters required for iron uptake in Yersinia pestis. Mol. Microbiol. 32, 289–299 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Reigstad, C.S., Hultgren, S.J. & Gordon, J.I. Functional genomic studies of uropathogenic Escherichia coli and host urothelial cells when intracellular bacterial communities are assembled. J. Biol. Chem. 282, 21259–21267 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Brumbaugh, A.R. et al. Blocking yersiniabactin import attenuates extraintestinal pathogenic Escherichia coli in cystitis and pyelonephritis and represents a novel target to prevent urinary tract infection. Infect. Immun. 83, 1443–1450 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Koh, E.-I., Hung, C.S. & Henderson, J.P. The yersiniabactin-associated ATP binding cassette proteins YbtP and YbtQ enhance Escherichia coli fitness during high-titer cystitis. Infect. Immun. 84, 1312–1319 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koh, E.-I. Metal selectivity by the virulence-associated yersiniabactin metallophore system. Metallomics 7, 1011–1022 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Lukacik, P. et al. Structural engineering of a phage lysin that targets gram-negative pathogens. Proc. Natl. Acad. Sci. USA 109, 9857–9862 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rodriguez, G.M. & Smith, I. Identification of an ABC transporter required for iron acquisition and virulence in Mycobacterium tuberculosis. J. Bacteriol. 188, 424–430 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Perry, R.D. & Fetherston, J.D. Yersiniabactin iron uptake: mechanisms and role in Yersinia pestis pathogenesis. Microbes Infect. 13, 808–817 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miethke, M., Hou, J. & Marahiel, M.A. The siderophore-interacting protein YqjH acts as a ferric reductase in different iron assimilation pathways of Escherichia coli. Biochemistry 50, 10951–10964 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Ryndak, M.B., Wang, S., Smith, I. & Rodriguez, G.M. The Mycobacterium tuberculosis high-affinity iron importer, IrtA, contains an FAD-binding domain. J. Bacteriol. 192, 861–869 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Lin, H., Fischbach, M.A., Liu, D.R. & Walsh, C.T. In vitro characterization of salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes. J. Am. Chem. Soc. 127, 11075–11084 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koh, E.-I. & Henderson, J.P. Microbial copper-binding siderophores at the host-pathogen interface. J. Biol. Chem. 290, 18967–18974 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lv, H. & Henderson, J.P. Yersinia high pathogenicity island genes modify the Escherichia coli primary metabolome independently of siderophore production. J. Proteome Res. 10, 5547–5554 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cooper, S.R., McArdle, J.V. & Raymond, K.N. Siderophore electrochemistry: relation to intracellular iron release mechanism. Proc. Natl. Acad. Sci. USA 75, 3551–3554 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Raymond, K.N., Dertz, E.A. & Kim, S.S. Enterobactin: an archetype for microbial iron transport. Proc. Natl. Acad. Sci. USA 100, 3584–3588 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Harrington, J.M. & Crumbliss, A.L. The redox hypothesis in siderophore-mediated iron uptake. Biometals 22, 679–689 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Hannauer, M., Barda, Y., Mislin, G.L.A., Shanzer, A. & Schalk, I.J. The ferrichrome uptake pathway in Pseudomonas aeruginosa involves an iron release mechanism with acylation of the siderophore and recycling of the modified desferrichrome. J. Bacteriol. 192, 1212–1220 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Olakanmi, O., Britigan, B.E. & Schlesinger, L.S. Gallium disrupts iron metabolism of mycobacteria residing within human macrophages. Infect. Immun. 68, 5619–5627 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hubbard, J.A.M., Lewandowska, K.B., Hughes, M.N. & Poole, R.K. Effects of iron-limitation of Escherichia coli on growth, the respiratory chains and gallium uptake. Arch. Microbiol. 146, 80–86 (1986).

    Article  CAS  PubMed  Google Scholar 

  28. Bernstein, L.R. Mechanisms of therapeutic activity for gallium. Pharmacol. Rev. 50, 665–682 (1998).

    CAS  PubMed  Google Scholar 

  29. Emery, T. Exchange of iron by gallium in siderophores. Biochemistry 25, 4629–4633 (1986).

    Article  CAS  PubMed  Google Scholar 

  30. Mies, K.A., Wirgau, J.I. & Crumbliss, A.L. Ternary complex formation facilitates a redox mechanism for iron release from a siderophore. Biometals 19, 115–126 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Creutz, C. Complexities of ascorbate as a reducing agent. Inorg. Chem. 20, 4449–4452 (1981).

    Article  CAS  Google Scholar 

  32. Klinman, J. P. The multi-functional topa-quinone copper amine oxidases. Biochim. Biophys. Acta. 1647, 131–137 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Parsons, M.R. et al. Crystal structure of a quinoenzyme: copper amine oxidase of Escherichia coli at 2 A resolution. Structure 3, 1171–1184 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Smith, M.A. et al. Exploring the roles of the metal ions in Escherichia coli copper amine oxidase. Biochemistry 49, 1268–1280 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Cvetkovic, A. et al. Microbial metalloproteomes are largely uncharacterized. Nature 466, 779–782 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. White, C., Lee, J., Kambe, T., Fritsche, K. & Petris, M.J. A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J. Biol. Chem. 284, 33949–33956 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun, T.-S. Reciprocal functions of Cryptococcus neoformans copper homeostasis machinery during pulmonary infection and meningoencephalitis. Nat. Commun. 5, 5550 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Ding, C. et al. The copper regulon of the human fungal pathogen Cryptococcus neoformans H99. Mol. Microbiol. 81, 1560–1576 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, C.X. et al. Candida albicans adapts to host copper during infection by swapping metal cofactors for superoxide dismutase. Proc. Natl. Acad. Sci. USA 112, E5336–E5342 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Osman, D. et al. The copper supply pathway to a Salmonella Cu,Zn-superoxide dismutase (SodCII) involves P(1B)-type ATPase copper efflux and periplasmic CueP. Mol. Microbiol. 87, 466–477 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Gold, B. et al. Identification of a copper-binding metallothionein in pathogenic mycobacteria. Nat. Chem. Biol. 4, 609–616 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hannan, T.J., Mysorekar, I.U., Hung, C.S., Isaacson-Schmid, M.L. & Hultgren, S.J. Early severe inflammatory responses to uropathogenic E. coli predispose to chronic and recurrent urinary tract infection. PLoS Pathog. 6, e1001042 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Imlay, K.R. & Imlay, J.A. Cloning and analysis of sodC, encoding the copper-zinc superoxide dismutase of Escherichia coli. J. Bacteriol. 178, 2564–2571 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. van der Oost, J. et al. Restoration of a lost metal-binding site: construction of two different copper sites into a subunit of the E. coli cytochrome o quinol oxidase complex. EMBO J. 11, 3209–3217 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Roberts, S.A. et al. A labile regulatory copper ion lies near the T1 copper site in the multicopper oxidase CueO. J. Biol. Chem. 278, 31958–31963 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Kim, B., Richards, S.M., Gunn, J.S. & Slauch, J.M. Protecting against antimicrobial effectors in the phagosome allows SodCII to contribute to virulence in Salmonella enterica serovar Typhimurium. J. Bacteriol. 192, 2140–2149 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hibbing, M.E., Fuqua, C., Parsek, M.R. & Peterson, S.B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jones, C.M. et al. Self-poisoning of Mycobacterium tuberculosis by interrupting siderophore recycling. Proc. Natl. Acad. Sci. USA 111, 1945–1950 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Imperi, F., Tiburzi, F. & Visca, P. Molecular basis of pyoverdine siderophore recycling in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 106, 20440–20445 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lv, H., Hung, C.S. & Henderson, J.P. Metabolomic analysis of siderophore cheater mutants reveals metabolic costs of expression in uropathogenic Escherichia coli. J. Proteome Res. 13, 1397–1404 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen, S.L. et al. Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: a comparative genomics approach. Proc. Natl. Acad. Sci. USA 103, 5977–5982 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Blattner, F.R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1462 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McCarthy, D.W. et al. Efficient production of high specific activity 64Cu using a biomedical cyclotron. Nucl. Med. Biol. 24, 35–43 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Kume, M. et al. A semi-automated system for the routine production of copper-64. Appl. Radiat. Isot. 70, 1803–1806 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Berdyshev, E.V. et al. Characterization of sphingosine-1-phosphate lyase activity by electrospray ionization-liquid chromatography/tandem mass spectrometry quantitation of (2E)-hexadecenal. Anal. Biochem. 408, 12–18 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.P.H. holds a Career Award for Medical Scientists from the Burroughs Wellcome Fund and acknowledges National Institute of Diabetes and Digestive and Kidney Diseases grants R01DK099534 and P50DK064540. A.E.R. was supported by the Mr. and Mrs. Spencer T. Olin Fellowship for Women in Graduate Study. ICP-MS was supported by the Nano Research Facility at Washington University in St. Louis. The funders had no role in study design, data collection and interpretation, or in the decision to submit the work for publication. We thank Z. Zou, J. Walker, L. Robinson, K. Tamadonfar and S. Krieger for technical assistance, and S. Ohlemacher for helpful discussion.

Author information

Authors and Affiliations

Authors

Contributions

E.K., A.E.R. and J.P.H. conceived and designed the experiments. E.K. and A.E.R. performed the biochemical experiments and follow-up studies. A.E.R. conducted the ICP-MS analysis. E.K. and N.B. performed the 64Cu radiolabeling experiments. E.K., A.E.R., N.B., B.E.R. and J.P.H. analyzed the data. E.K., A.E.R. and J.P.H. wrote the paper.

Corresponding author

Correspondence to Jeffrey P Henderson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Table 1 and Supplementary Figures 1–2 (PDF 276 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koh, EI., Robinson, A., Bandara, N. et al. Copper import in Escherichia coli by the yersiniabactin metallophore system. Nat Chem Biol 13, 1016–1021 (2017). https://doi.org/10.1038/nchembio.2441

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2441

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology