Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spatiotemporal modulation of biodiversity in a synthetic chemical-mediated ecosystem

Abstract

Biodiversity, or the relative abundance of species, measures the persistence of an ecosystem. To better understand its modulation, we analyzed the spatial and temporal dynamics of a synthetic, chemical-mediated ecosystem that consisted of two engineered Escherichia coli populations. Depending on the specific experimental conditions implemented, the dominant interaction between the two populations could be competition for nutrients or predation due to engineered communication. While the two types of interactions resulted in different spatial patterns, they demonstrated a common trend in terms of the modulation of biodiversity. Specifically, biodiversity decreased with increasing cellular motility if the segregation distance between the two populations was comparable to the length scale of the chemical-mediated interaction. Otherwise, biodiversity was insensitive to cellular motility. Our results suggested a simple criterion for predicting the modulation of biodiversity by habitat partitioning and cellular motility in chemical-mediated ecosystems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatiotemporal dynamics of the predator and the prey in response to IPTG and AHLs in solid phase.
Figure 2: Motility had a minor impact on the biodiversity if the predator and the prey were randomly distributed in close proximity.
Figure 3: Reduced motility promoted biodiversity if seeding habitats were partitioned.
Figure 4: Two critical segregation distances (dc1, dc2) in determining the impact of motility on biodiversity.
Figure 5: A general criterion in determining the impact of cellular motility on biodiversity.

Similar content being viewed by others

References

  1. Falkowski, P.G., Fenchel, T. & Delong, E.F. The microbial engines that drive Earth's biogeochemical cycles. Science 320, 1034–1039 (2008).

    Article  CAS  Google Scholar 

  2. Strom, S.L. Microbial ecology of ocean biogeochemistry: a community perspective. Science 320, 1043–1045 (2008).

    Article  CAS  Google Scholar 

  3. Muyzer, G. & Stams, A.J. The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol. 6, 441–454 (2008).

    Article  CAS  Google Scholar 

  4. Jia, W., Li, H., Zhao, L. & Nicholson, J.K. Gut microbiota: a potential new territory for drug targeting. Nat. Rev. Drug Discov. 7, 123–129 (2008).

    Article  CAS  Google Scholar 

  5. Dethlefsen, L., McFall-Ngai, M. & Relman, D.A. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449, 811–818 (2007).

    Article  CAS  Google Scholar 

  6. Brenner, K., You, L. & Arnold, F.H. Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol. 26, 483–489 (2008).

    Article  CAS  Google Scholar 

  7. Peet, R. The measurement of species diversity. Annu. Rev. Ecol. Syst. 5, 285–307 (1974).

    Article  Google Scholar 

  8. Jessup, C.M. et al. Big questions, small worlds: microbial model systems in ecology. Trends Ecol. Evol. 19, 189–197 (2004).

    Article  Google Scholar 

  9. Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).

    Article  CAS  Google Scholar 

  10. Ley, R.E., Peterson, D.A. & Gordon, J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124, 837–848 (2006).

    Article  CAS  Google Scholar 

  11. Dykhuizen, D.E. Santa Rosalia revisited: why are there so many species of bacteria? Antonie Van Leeuwenhoek 73, 25–33 (1998).

    Article  CAS  Google Scholar 

  12. Staley, J.T. & Reysenbach, A.-L. (eds.) Biodiversity of Microbial Life: Foundation of Earth's Biosphere (Wiley-Liss, New York, 2001).

  13. Ward, D.M., Ferris, M.J., Nold, S.C. & Bateson, M.M. A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol. Mol. Biol. Rev. 62, 1353–1370 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Horner-Devine, M.C., Carney, K.M. & Bohannan, B.J. An ecological perspective on bacterial biodiversity. Proc. Biol. Sci. 271, 113–122 (2004).

    Article  Google Scholar 

  15. Tilman, D. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80, 1455–1474 (1999).

    Google Scholar 

  16. Chesson, P. & Kuang, J.J. The interaction between predation and competition. Nature 456, 235–238 (2008).

    Article  CAS  Google Scholar 

  17. Martin, M.O. Predatory prokaryotes: an emerging research opportunity. J. Mol. Microbiol. Biotechnol. 4, 467–477 (2002).

    CAS  PubMed  Google Scholar 

  18. Jurkevitch, E. Predatory behaviors in bacteria - diversity and transitions. Microbe 2, 67–73 (2007).

    Google Scholar 

  19. Guerrero, R. et al. Predatory prokaryotes: predation and primary consumption evolved in bacteria. Proc. Natl. Acad. Sci. USA 83, 2138–2142 (1986).

    Article  CAS  Google Scholar 

  20. Esteve, I., Gaju, N., Mir, J. & Guerrero, R. Comparison of techniques to determine the abundance of predatory bacteria attacking chromatiaceae. FEMS Microbiol. Lett. 86, 205–211 (1992).

    Article  Google Scholar 

  21. Lambert, C., Morehouse, K.A., Chang, C.Y. & Sockett, R.E. Bdellovibrio: growth and development during the predatory cycle. Curr. Opin. Microbiol. 9, 639–644 (2006).

    Article  CAS  Google Scholar 

  22. Shou, W., Ram, S. & Vilar, J.M. Synthetic cooperation in engineered yeast populations. Proc. Natl. Acad. Sci. USA 104, 1877–1882 (2007).

    Article  CAS  Google Scholar 

  23. Hart, B.A. & Zahler, S.A. Lytic enzyme produced by Myxococcus xanthus. J. Bacteriol. 92, 1632–1637 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Berleman, J.E., Chumley, T., Cheung, P. & Kirby, J.R. Rippling is a predatory behavior in Myxococcus xanthus. J. Bacteriol. 188, 5888–5895 (2006).

    Article  CAS  Google Scholar 

  25. Pham, V.D., Shebelut, C.W., Diodati, M.E., Bull, C.T. & Singer, M. Mutations affecting predation ability of the soil bacterium Myxococcus xanthus. Microbiology 151, 1865–1874 (2005).

    Article  CAS  Google Scholar 

  26. Keller, L. & Surette, M.G. Communication in bacteria: an ecological and evolutionary perspective. Nat. Rev. Microbiol. 4, 249–258 (2006).

    Article  CAS  Google Scholar 

  27. Battin, T.J. et al. Microbial landscapes: new paths to biofilm research. Nat. Rev. Microbiol. 5, 76–81 (2007).

    Article  CAS  Google Scholar 

  28. Pohnert, G., Steinke, M. & Tollrian, R. Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions. Trends Ecol. Evol. 22, 198–204 (2007).

    Article  Google Scholar 

  29. Dicke, M. & Sabelis, M.W. Infochemical terminology: based on cost-benefit analysis rather than origin of compounds? Funct. Ecol. 2, 131–139 (1988).

    Article  Google Scholar 

  30. Ianora, A. et al. New trends in marine chemical ecology. Estuaries Coasts 29, 531–551 (2006).

    Article  CAS  Google Scholar 

  31. Waters, C.M. & Bassler, B.L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005).

    Article  CAS  Google Scholar 

  32. Whittaker, R.H. & Feeny, P.P. Allelochemicals: chemical interactions between species. Science 171, 757–770 (1971).

    Article  CAS  Google Scholar 

  33. Weissburg, M.J., Ferner, M.C., Pisut, D.P. & Smee, D.L. Ecological consequences of chemically mediated prey perception. J. Chem. Ecol. 28, 1953–1970 (2002).

    Article  CAS  Google Scholar 

  34. Shiner, E.K., Rumbaugh, K.P. & Williams, S.C. Inter-kingdom signaling: deciphering the language of acyl homoserine lactones. FEMS Microbiol. Rev. 29, 935–947 (2005).

    Article  CAS  Google Scholar 

  35. Kerr, B., Riley, M.A., Feldman, M.W. & Bohannan, B.J. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418, 171–174 (2002).

    Article  CAS  Google Scholar 

  36. Reichenbach, T., Mobilia, M. & Frey, E. Mobility promotes and jeopardizes biodiversity in rock-paper-scissors games. Nature 448, 1046–1049 (2007).

    Article  CAS  Google Scholar 

  37. Balagadde, F.K. et al. A synthetic Escherichia coli predator-prey ecosystem. Mol. Syst. Biol. 4, 187 (2008).

    Article  Google Scholar 

  38. Weber, W., Daoud-El Baba, M. & Fussenegger, M. Synthetic ecosystems based on airborne inter- and intrakingdom communication. Proc. Natl. Acad. Sci. USA 104, 10435–10440 (2007).

    Article  CAS  Google Scholar 

  39. Kosinski, M.J., Rinas, U. & Bailey, J.E. Isopropyl-β-D-thiogalactopyranoside influences the metabolism of Escherichia coli. Appl. Microbiol. Biotechnol. 36, 782–784 (1992).

    Article  CAS  Google Scholar 

  40. Lauffenburger, D.A. Quantitative studies of bacterial chemotaxis and microbial population dynamics. Microb. Ecol. 22, 175–185 (1991).

    Article  CAS  Google Scholar 

  41. Kelly, F.X., Dapsis, K.J. & Lauffenburger, D.A. Effect of bacterial chemotaxis on dynamics of microbial competition. Microb. Ecol. 16, 115–131 (1988).

    Article  CAS  Google Scholar 

  42. Woodward, D.E. et al. Spatio-temporal patterns generated by Salmonella typhimurium. Biophys. J. 68, 2181–2189 (1995).

    Article  CAS  Google Scholar 

  43. Keller, E.F. & Segel, L.A. Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theor. Biol. 30, 235–248 (1971).

    Article  CAS  Google Scholar 

  44. Hastings, A. Transients: the key to long-term ecological understanding? Trends Ecol. Evol. 19, 39–45 (2004).

    Article  Google Scholar 

  45. Tilman, D. & Kareiva, P. Spatial Ecology (Princeton University Press, Princeton, New Jersey, 1997).

  46. Rosenzweig, M.L. Species Diversity in Space and Time (Cambridge University Press, Cambridge, UK, 1995).

  47. Stolp, H. Microbial Ecology: Organisms, Habitats, Activities (Cambridge University Press, Cambridge, UK, 1988).

  48. Hastings, A. Spatial heterogeneity and the stability of predator-prey systems. Theor. Popul. Biol. 12, 37–48 (1977).

    Article  CAS  Google Scholar 

  49. Kim, H.J., Boedicker, J.Q., Choi, J.W. & Ismagilov, R.F. Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc. Natl. Acad. Sci. USA 105, 18188–18193 (2008).

    Article  CAS  Google Scholar 

  50. Brenner, K., Karig, D.K., Weiss, R. & Arnold, F.H. Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proc. Natl. Acad. Sci. USA 104, 17300–17304 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Yuan for access to a Kodak fluorescence image station and software (Comsol Multiphysics); F. Arnold (California Institute of Technology) and C. Collins (Rensselaer Polytechnic Institute) for sharing genetic constructs; D. Schaeffer for suggestions on modeling; C. Tan for commenting on the manuscript; and other You lab members for discussions. This study was supported by the US National Institutes of Health (5R01CA118486), a David and Lucile Packard Fellowship (L.Y.), a DuPont Young Professor Award (L.Y.), a US National Institute of General Medical Sciences Biotechnology Predoctoral Center for Biomolecular and Tissue Engineering Fellowship (to S.P.) and a Duke University Pratt Fellowship for undergraduate research (to M.G.). We thank the anonymous reviewers for critical and constructive suggestions.

Author information

Authors and Affiliations

Authors

Contributions

H.S. and L.Y. conceived the project; H.S., S.P. and M.G. performed the experiments; H.S. performed the mathematical modeling; H.S., S.P. and L.Y. analyzed the data; H.S., S.P. and L.Y. wrote the paper.

Corresponding author

Correspondence to Lingchong You.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 2253 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, H., Payne, S., Gray, M. et al. Spatiotemporal modulation of biodiversity in a synthetic chemical-mediated ecosystem. Nat Chem Biol 5, 929–935 (2009). https://doi.org/10.1038/nchembio.244

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.244

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing