Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structures of carboxylic acid reductase reveal domain dynamics underlying catalysis

Abstract

Carboxylic acid reductase (CAR) catalyzes the ATP- and NADPH-dependent reduction of carboxylic acids to the corresponding aldehydes. The enzyme is related to the nonribosomal peptide synthetases, consisting of an adenylation domain fused via a peptidyl carrier protein (PCP) to a reductase termination domain. Crystal structures of the CAR adenylation–PCP didomain demonstrate that large-scale domain motions occur between the adenylation and thiolation states. Crystal structures of the PCP–reductase didomain reveal that phosphopantetheine binding alters the orientation of a key Asp, resulting in a productive orientation of the bound nicotinamide. This ensures that further reduction of the aldehyde product does not occur. Combining crystallography with small-angle X-ray scattering (SAXS), we propose that molecular interactions between initiation and termination domains are limited to competing PCP docking sites. This theory is supported by the fact that (R)-pantetheine can support CAR activity for mixtures of the isolated domains. Our model suggests directions for further development of CAR as a biocatalyst.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Carboxylic acid reductase (CAR) is a modular enzyme.
Figure 2: Structure of the CARsr A–PCP didomain reveals a dynamic entity.
Figure 3: Structure of CAR reductase and PCP–R regions.
Figure 4: Modeling of the full-length CAR structure.
Figure 5: A dynamic model for CAR.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Gross, G.G. Formation and reduction of intermediate acyladenylate by aryl-aldehyde. NADP oxidoreductase from Neurospora crassa. Eur. J. Biochem. 31, 585–592 (1972).

    Article  CAS  PubMed  Google Scholar 

  2. He, A., Li, T., Daniels, L., Fotheringham, I. & Rosazza, J.P.N. Nocardia sp. carboxylic acid reductase: cloning, expression, and characterization of a new aldehyde oxidoreductase family. Appl. Environ. Microbiol. 70, 1874–1881 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Akhtar, M.K., Turner, N.J. & Jones, P.R. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc. Natl. Acad. Sci. USA 110, 87–92 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Strieker, M., Tanović, A. & Marahiel, M.A. Nonribosomal peptide synthetases: structures and dynamics. Curr. Opin. Struct. Biol. 20, 234–240 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Gulick, A.M. Structural insight into the necessary conformational changes of modular nonribosomal peptide synthetases. Curr. Opin. Chem. Biol. 35, 89–96 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Drake, E.J. et al. Structures of two distinct conformations of holo-non-ribosomal peptide synthetases. Nature 529, 235–238 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reimer, J.M., Aloise, M.N., Harrison, P.M. & Schmeing, T.M. Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase. Nature 529, 239–242 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Lennen, R.M. & Pfleger, B.F. Microbial production of fatty acid-derived fuels and chemicals. Curr. Opin. Biotechnol. 24, 1044–1053 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Kallio, P., Pásztor, A., Thiel, K., Akhtar, M.K. & Jones, P.R. An engineered pathway for the biosynthesis of renewable propane. Nat. Commun. 5, 4731 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Duan, Y. et al. Synthesis of α,β-unsaturated esters via a chemo-enzymatic chain elongation approach by combining carboxylic acid reduction and Wittig reaction. Beilstein J. Org. Chem. 11, 2245–2251 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu, P., Qiao, K., Ahn, W.S. & Stephanopoulos, G. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc. Natl. Acad. Sci. USA 113, 10848–10853 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou, Y.J. et al. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat. Commun. 7, 11709 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. France, S.P. et al. One pot cascade synthesis of mono- and di-substituted piperidines and pyrrolidines using carboxylic acid reductase (CAR), ω-transaminase (ω-TA) and imine reductase (IRED) biocatalysts. ACS Catal. 6, 3753–3759 (2016).

    Article  CAS  Google Scholar 

  14. Finnigan, W. et al. Characterization of carboxylic acid reductases as enzymes in the toolbox for synthetic chemistry. ChemCatChem 9, 1005–1017 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gulick, A.M. Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. ACS Chem. Biol. 4, 811–827 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chhabra, A. et al. Nonprocessive [2 + 2]e- off-loading reductase domains from mycobacterial nonribosomal peptide synthetases. Proc. Natl. Acad. Sci. USA 109, 5681–5686 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barajas, J.F. et al. Comprehensive structural and biochemical analysis of the terminal myxalamid reductase domain for the engineered production of primary alcohols. Chem. Biol. 22, 1018–1029 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Marahiel, M.A., Stachelhaus, T. & Mootz, H.D. Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem. Rev. 97, 2651–2674 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Thornburg, C.K., Wortas-Strom, S., Nosrati, M., Geiger, J.H. & Walker, K.D. Kinetically and crystallographically guided mutations of a benzoate coa ligase (Bada) elucidate mechanism and expand substrate permissivity. Biochemistry 54, 6230–6242 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Kochan, G., Pilka, E.S., von Delft, F., Oppermann, U. & Yue, W.W. Structural snapshots for the conformation-dependent catalysis by human medium-chain acyl-coenzyme A synthetase ACSM2A. J. Mol. Biol. 388, 997–1008 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Kavanagh, K.L., Jörnvall, H., Persson, B. & Oppermann, U. Medium- and short-chain dehydrogenase/reductase gene and protein families : the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell. Mol. Life Sci. 65, 3895–3906 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Awodi, U.R., Ronan, J.L., Masschelein, J., de Los Santos, E.L.C. & Challis, G.L. Thioester reduction and aldehyde transamination are universal steps in actinobacterial polyketide alkaloid biosynthesis. Chem. Sci. 8, 411–415 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Peng, H. et al. Deciphering piperidine formation in polyketide-derived indolizidines reveals a thioester reduction, transamination, and unusual imine reduction process. ACS Chem. Biol. 11, 3278–3283 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Mootz, H.D., Schwarzer, D. & Marahiel, M.A. Construction of hybrid peptide synthetases by module and domain fusions. Proc. Natl. Acad. Sci. USA 97, 5848–5853 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hur, G.H., Vickery, C.R. & Burkart, M.D. Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Nat. Prod. Rep. 29, 1074–1098 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Calcott, M.J. & Ackerley, D.F. Portability of the thiolation domain in recombinant pyoverdine non-ribosomal peptide synthetases. BMC Microbiol. 15, 162 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Khosla, C., Herschlag, D., Cane, D.E. & Walsh, C.T. Assembly line polyketide synthases: mechanistic insights and unsolved problems. Biochemistry 53, 2875–2883 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Merdanovic, M., Mönig, T., Ehrmann, M. & Kaiser, M. Diversity of allosteric regulation in proteases. ACS Chem. Biol. 8, 19–26 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Kornev, A.P. & Taylor, S.S. Dynamics-driven allostery in protein kinases. Trends Biochem. Sci. 40, 628–647 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Langelier, M.F. & Pascal, J.M. PARP-1 mechanism for coupling DNA damage detection to poly(ADP-ribose) synthesis. Curr. Opin. Struct. Biol. 23, 134–143 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dowling, D.P. et al. Structural elements of an NRPS cyclization domain and its intermodule docking domain. Proc. Natl. Acad. Sci. USA 113, 12432–12437 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. O'Connor, S.E., Walsh, C.T. & Liu, F. Biosynthesis of epothilone intermediates with alternate starter units: engineering polyketide-nonribosomal interfaces. Angew. Chem. Int. Edn Engl. 42, 3917–3921 (2003).

    Article  CAS  Google Scholar 

  33. Yin, J., Lin, A.J., Golan, D.E. & Walsh, C.T. Site-specific protein labeling by Sfp phosphopantetheinyl transferase. Nat. Protoc. 1, 280–285 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Winter, G., Lobley, C.M. & Prince, S.M. Decision making in xia2. Acta Crystallogr. D Biol. Crystallogr. 69, 1260–1273 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sheldrick, G.M. Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr. D Biol. Crystallogr. 66, 479–485 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    CAS  PubMed  Google Scholar 

  41. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Joosten, R.P., Long, F., Murshudov, G.N. & Perrakis, A. The PDB_REDO server for macromolecular structure model optimization. IUCrJ 1, 213–220 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Petoukhov, M.V. et al. New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Crystallogr. 45, 342–350 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rambo, R.P. & Tainer, J.A. Accurate assessment of mass, models and resolution by small-angle scattering. Nature 496, 477–481 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Svergun, D., Barberato, C. & Koch, M.H.J. CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Crystallogr. 28, 768–773 (1995).

    Article  CAS  Google Scholar 

  46. Schneidman-Duhovny, D., Hammel, M. & Sali, A. FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res. 38, W540–W544 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schneidman-Duhovny, D., Hammel, M., Tainer, J.A. & Sali, A. FoXS, FoXSDock and MultiFoXS: single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles. Nucleic Acids Res. 44, W1, W424–W429 (2016).

    Article  Google Scholar 

  48. Tria, G., Mertens, H.D.T., Kachala, M. & Svergun, D.I. Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering. IUCrJ 2, 207–217 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hayes, D., Laue, T. & Philo, J. Program Sednterp: Sedimentation Interpretation Program. (Alliance Protein Laboratories, Thousand Oaks, California, USA) (1995).

  51. Pudney, C.R., Hay, S. & Scrutton, N.S. Practical aspects on the use of kinetic isotope effects as probes of flavoprotein enzyme mechanisms. Methods Mol. Biol. 1146, 161–175 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Hay, S., Pudney, C.R., Sutcliffe, M.J. & Scrutton, N.S. Are environmentally coupled enzymatic hydrogen tunneling reactions influenced by changes in solution viscosity? Angew. Chem. Int. Ed. Engl. 47, 537–540 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by BBSRC grant (BB/K00199X/1 to N.T., N.S.S. and D.L.). We thank the BBSRC/EPSRC SYNBIOCHEM Centre (grant BB/M017702/1 to N.T., N.S.S. and D.L.) for access to analytical equipment. We thank the Diamond Light Source for access to beam lines for macromolecular crystallography and bio-SAXS (proposal number MX12788). D.L. and N.T. are Royal Society Wolfson Merit Award holders. N.S.S. is an EPSRC Established Career Fellow. We thank the CoEBio3 Affiliates programme for funding to A.H.

Author information

Authors and Affiliations

Authors

Contributions

M.S.D. cloned, expressed and purified various CAR enzymes (both truncations and full-length as well as hybrid forms) and obtained crystal structures for both A and R domains. D.G. cloned, expressed and purified various CAR enzymes and obtained crystals structures for the PCP-didomain constructs in addition to isolated R domain structures. D.G. and M.P.L.-C. performed SAXS data collection and modeling. E.K., D.Q., A.M.H. and S.R.D. performed kinetic data analysis. All authors discussed the results and participated in writing of the manuscript. N.J.T., N.S.S. and D.L. initiated and directed this research.

Corresponding author

Correspondence to David Leys.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–10 and Supplementary Table 1 (PDF 16995 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gahloth, D., Dunstan, M., Quaglia, D. et al. Structures of carboxylic acid reductase reveal domain dynamics underlying catalysis. Nat Chem Biol 13, 975–981 (2017). https://doi.org/10.1038/nchembio.2434

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2434

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing