Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A new strategy for aromatic ring alkylation in cylindrocyclophane biosynthesis

Abstract

Alkylation of aromatic rings with alkyl halides is an important transformation in organic synthesis, yet an enzymatic equivalent is unknown. Here, we report that cylindrocyclophane biosynthesis in Cylindrospermum licheniforme ATCC 29412 involves chlorination of an unactivated carbon center by a novel halogenase, followed by a previously uncharacterized enzymatic dimerization reaction featuring sequential, stereospecific alkylations of resorcinol aromatic rings. Discovery of the enzymatic machinery underlying this unique biosynthetic carbon–carbon bond formation has implications for biocatalysis and metabolic engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Construction of the paracyclophane scaffold of the cylindrocyclophanes involves enzymatic aromatic ring alkylation with an alkyl chloride.
Figure 2: Chlorination of a cylindrocyclophane biosynthetic intermediate by the previously unknown halogenase CylC.
Figure 3: CylK alkylates resorcinol aromatic rings with alkyl chlorides to assemble a paracyclophane ring.
Figure 4: CylC and CylK are widespread in cyanobacterial genomes.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

Referenced accessions

Protein Data Bank

References

  1. Friedel, C. & Crafts, J.M. Sur une nouvelle méthode générale de synthèse d'hydrocarbures, d'acétones, etc. Comptes rendus des séances 84, 1392–1395 (1877).

    Google Scholar 

  2. Reddy, V.P. & Prakash, G.K.S. Friedel-Crafts Reactions. In Kirk-Othmer Encyclopedia of Chemical Technology (John Wiley & Sons, Inc., 2000).

  3. Moore, B.S. et al. [7.7]Paracyclophanes from blue-green algae. J. Am. Chem. Soc. 112, 4061–4063 (1990).

    CAS  Google Scholar 

  4. Chen, J.L., Moore, R.E. & Patterson, G.M.L. Structures of nostocyclophanes A-D. J. Org. Chem. 56, 4360–4364 (1991).

    CAS  Google Scholar 

  5. Moore, B.S., Chen, J.L., Patterson, G.M.L. & Moore, R.E. Structures of cylindrocyclophanes A-F. Tetrahedron 48, 3001–3006 (1992).

    CAS  Google Scholar 

  6. Bui, H.T.N., Jansen, R., Pham, H.T.L. & Mundt, S. Carbamidocyclophanes A-E, chlorinated paracyclophanes with cytotoxic and antibiotic activity from the Vietnamese cyanobacterium Nostoc sp. J. Nat. Prod. 70, 499–503 (2007).

    CAS  PubMed  Google Scholar 

  7. Chlipala, G.E. et al. Cylindrocyclophanes with proteasome inhibitory activity from the Cyanobacterium Nostoc sp. J. Nat. Prod. 73, 1529–1537 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kang, H.-S. Merocyclophanes A and B, antiproliferative cyclophanes from the cultured terrestrial Cyanobacterium Nostoc sp. Phytochemistry 79, 109–115 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Luo, S. et al. Carbamidocyclophanes F and G with anti-Mycobacterium tuberculosis activity from the cultured freshwater cyanobacterium Nostoc sp. Tetrahedr. Lett. 55, 686–689 (2014).

    CAS  Google Scholar 

  10. Preisitsch, M. et al. Anti-MRSA-acting carbamidocyclophanes H-L from the Vietnamese cyanobacterium Nostoc sp. CAVN2. J. Antibiot. 68, 165–177 (2015).

    CAS  Google Scholar 

  11. Preisitsch, M. et al. Effects of halide ions on the Carbamidocyclophane biosynthesis in Nostoc sp. CAVN2. Mar. Drugs 14, 21 (2016).

    PubMed  PubMed Central  Google Scholar 

  12. May, D.S. et al. Merocyclophanes C and D from the cultured freshwater cyanobacterium Nostoc sp. (UIC 10110). J. Nat. Prod. 80, 1073–1080 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bobzin, S.C. & Moore, R.E. Biosynthetic origin of [7.7]paracyclophanes from cyanobacteria. Tetrahedron 49, 7615–7626 (1993).

    CAS  Google Scholar 

  14. Nakamura, H., Hamer, H.A., Sirasani, G. & Balskus, E.P. Cylindrocyclophane biosynthesis involves functionalization of an unactivated carbon center. J. Am. Chem. Soc. 134, 18518–18521 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nakamura, H., Wang, J.X. & Balskus, E.P. Assembly line termination in cylindrocyclophane biosynthesis: discovery of an editing type II thioesterase domain in a type I polyketide synthase. Chem. Sci. 6, 3816–3822 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sydor, P.K. et al. Regio- and stereodivergent antibiotic oxidative carbocyclizations catalysed by Rieske oxygenase-like enzymes. Nat. Chem. 3, 388–392 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Choi, Y.S., Zhang, H., Brunzelle, J.S., Nair, S.K. & Zhao, H. In vitro reconstitution and crystal structure of p-aminobenzoate N-oxygenase (AurF) involved in aureothin biosynthesis. Proc. Natl. Acad. Sci. USA 105, 6858–6863 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zocher, G., Winkler, R., Hertweck, C. & Schulz, G.E. Structure and action of the N-oxygenase AurF from Streptomyces thioluteus. J. Mol. Biol. 373, 65–74 (2007).

    CAS  PubMed  Google Scholar 

  19. Nordlund, P. & Eklund, H. Di-iron-carboxylate proteins. Curr. Opin. Struct. Biol. 5, 758–766 (1995).

    CAS  PubMed  Google Scholar 

  20. Okino, T., Matsuda, H., Murakami, M. & Yamaguchi, K. Microginin, an angiotensin converting enzyme inhibitor from the blue-green alga Microcystis aeruginosa. Tetrahedr. Lett. 34, 501–504 (1993).

    CAS  Google Scholar 

  21. Kodani, S., Suzuki, S., Ishida, K. & Murakami, M. Five new cyanobacterial peptides from water bloom materials of lake Teganuma (Japan). FEMS Microbiol. Lett. 178, 343–348 (1999).

    CAS  Google Scholar 

  22. Ishida, K., Matsuda, H. & Murakami, M. Four new microginins, linear peptides from the cyanobacterium Microcystis aeruginosa. Tetrahedron 54, 13475–13484 (1998).

    CAS  Google Scholar 

  23. Kramer, D. Microginin producing proteins and nucleic acids encoding a microginin gene cluster as well as methods for creating novel microginins. US patent 7,846,686B2 (2010).

  24. Leão, P.N. et al. Biosynthesis-assisted structural elucidation of the bartolosides, chlorinated aromatic glycolipids from cyanobacteria. Angew. Chem. Int. Ed. Engl. 54, 11063–11067 (2015).

    PubMed  PubMed Central  Google Scholar 

  25. Kleigrewe, K. et al. Combining mass spectrometric metabolic profiling with genomic analysis: a powerful approach for discovering natural products from cyanobacteria. J. Nat. Prod. 78, 1671–1682 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wagner, C., El Omari, M. & König, G.M. Biohalogenation: nature's way to synthesize halogenated metabolites. J. Nat. Prod. 72, 540–553 (2009).

    CAS  PubMed  Google Scholar 

  27. Preisitsch, M. et al. Cylindrofridins A–C, linear cylindrocyclophane-related alkylresorcinols from the cyanobacterium Cylindrospermum stagnale. J. Nat. Prod. 79, 106–115 (2016).

    CAS  PubMed  Google Scholar 

  28. Pfeifer, B.A., Admiraal, S.J., Gramajo, H., Cane, D.E. & Khosla, C. Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291, 1790–1792 (2001).

    CAS  PubMed  Google Scholar 

  29. Nakano, C., Funa, N., Ohnishi, Y. & Horinouchi, S. The O-methyltransferase SrsB catalyzes the decarboxylative methylation of alkylresorcylic acid during phenolic lipid biosynthesis by Streptomyces griseus. J. Bacteriol. 194, 1544–1551 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Linhartová, I. et al. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev. 34, 1076–1112 (2010).

    PubMed  Google Scholar 

  31. Slack, F.J. & Ruvkun, G. A novel repeat domain that is often associated with RING finger and B-box motifs. Trends Biochem. Sci. 23, 474–475 (1998).

    CAS  PubMed  Google Scholar 

  32. Smith, A.B. III., Kozmin, S.A. & Paone, D.A. Total synthesis of (−)-cylindrocyclophane F. J. Am. Chem. Soc. 121, 7423–7424 (1999).

    CAS  Google Scholar 

  33. Yeh, E., Garneau, S. & Walsh, C.T. Robust in vitro activity of RebF and RebH, a two-component reductase/halogenase, generating 7-chlorotryptophan during rebeccamycin biosynthesis. Proc. Natl. Acad. Sci. USA 102, 3960–3965 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Magarvey, N.A. et al. Biosynthetic characterization and chemoenzymatic assembly of the cryptophycins. Potent anticancer agents from cyanobionts. ACS Chem. Biol. 1, 766–779 (2006).

    CAS  PubMed  Google Scholar 

  35. Galonić, D.P., Vaillancourt, F.H. & Walsh, C.T. Halogenation of unactivated carbon centers in natural product biosynthesis: trichlorination of leucine during barbamide biosynthesis. J. Am. Chem. Soc. 128, 3900–3901 (2006).

    PubMed  Google Scholar 

  36. Hillwig, M.L. & Liu, X. A new family of iron-dependent halogenases acts on freestanding substrates. Nat. Chem. Biol. 10, 921–923 (2014).

    CAS  PubMed  Google Scholar 

  37. Nowak-Thompson, B. et al. 2,5-dialkylresorcinol biosynthesis in Pseudomonas aurantiaca: novel head-to-head condensation of two fatty acid-derived precursors. J. Bacteriol. 185, 860–869 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Vaillancourt, F.H., Yeh, E., Vosburg, D.A., O'Connor, S.E. & Walsh, C.T. Cryptic chlorination by a non-haem iron enzyme during cyclopropyl amino acid biosynthesis. Nature 436, 1191–1194 (2005).

    CAS  PubMed  Google Scholar 

  39. Gu, L. et al. Metamorphic enzyme assembly in polyketide diversification. Nature 459, 731–735 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Neumann, C.S., Fujimori, D.G. & Walsh, C.T. Halogenation strategies in natural product biosynthesis. Chem. Biol. 15, 99–109 (2008).

    CAS  PubMed  Google Scholar 

  41. Chankhamjon, P. et al. Regioselective dichlorination of a non-activated aliphatic carbon atom and phenolic bismethylation by a multifunctional fungal flavoenzyme. Angew. Chem. Int. Ed. Engl. 55, 11955–11959 (2016).

    CAS  PubMed  Google Scholar 

  42. Streitwieser, A. Solvolytic displacement reactions at saturated carbon atoms. Chem. Rev. 56, 571–752 (1956).

    CAS  Google Scholar 

  43. Stecher, H. et al. Biocatalytic Friedel-Crafts alkylation using non-natural cofactors. Angew. Chem. Int. Edn Engl. 48, 9546–9548 (2009).

    CAS  Google Scholar 

  44. Zhou, K., Ludwig, L. & Li, S.M. Friedel-crafts alkylation of acylphloroglucinols catalyzed by a fungal indole prenyltransferase. J. Nat. Prod. 78, 929–933 (2015).

    CAS  PubMed  Google Scholar 

  45. Fesko, K. & Gruber-Khadjawi, M. Biocatalytic methods for C–C bond formation. ChemCatChem 5, 1248–1272 (2013).

    CAS  Google Scholar 

  46. Söding, J., Biegert, A. & Lupas, A.N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005).

    PubMed  PubMed Central  Google Scholar 

  47. Knoot, C.J., Kovaleva, E.G. & Lipscomb, J.D. Crystal structure of CmlI, the arylamine oxygenase from the chloramphenicol biosynthetic pathway. J. Biol. Inorg. Chem. 21, 589–603 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Eswar, N. et al. Comparative protein structure modeling using Modeller. Curr. Protoc. Bioinformatics 15, 5.6.1–5.6.30 (2006).

    Google Scholar 

  49. Brown, N.C., Eliasson, R., Reichard, P. & Thelander, L. Spectrum and iron content of protein B2 from ribonucleoside diphosphate reductase. Eur. J. Biochem. 9, 512–518 (1969).

    CAS  PubMed  Google Scholar 

  50. Stoscheck, C.M. Quantitation of protein. Methods Enzymol. 182, 50–68 (1990).

    CAS  PubMed  Google Scholar 

  51. Yin, J., Lin, A.J., Golan, D.E. & Walsh, C.T. Site-specific protein labeling by Sfp phosphopantetheinyl transferase. Nat. Protoc. 1, 280–285 (2006).

    CAS  PubMed  Google Scholar 

  52. Kennedy, M.C. et al. Evidence for the formation of a linear [3Fe-4S] cluster in partially unfolded aconitase. J. Biol. Chem. 259, 14463–14471 (1984).

    PubMed  Google Scholar 

  53. Marchler-Bauer, A. et al. CDD: NCBI's conserved domain database. Nucleic Acids Res. 43, D222–D226 (2015).

    CAS  PubMed  Google Scholar 

  54. Buchinger, E. et al. Structural and functional characterization of the R-modules in alginate C-5 epimerases AlgE4 and AlgE6 from Azotobacter vinelandii. J. Biol. Chem. 289, 31382–31396 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Korczynska, M., Mukhtar, T.A., Wright, G.D. & Berghuis, A.M. Structural basis for streptogramin B resistance in Staphylococcus aureus by virginiamycin B lyase. Proc. Natl. Acad. Sci. USA 104, 10388–10393 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Julien, O. et al. Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles. Proc. Natl. Acad. Sci. USA 113, E2001–E2010 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (CAREER Award no. 1454007; E.P.B.), the Searle Scholars Program (E.P.B.), and the Cottrell Scholar Award (E.P.B.). H.N. acknowledges fellowship support from the NSF GRFP (DGE1144152). We acknowledge H. Hamer and G. Sirasani for preliminary experimental contributions; S. Trauger, G. Byrd, and C. Vidoudez for mass spectrometry analyses; N.R. Braffman for assistance in scaling up CylK assays; and A. Bendelsmith for assistance with chiral HPLC analyses.

Author information

Authors and Affiliations

Authors

Contributions

H.N. and E.P.B. designed the study. H.N. performed all of the bioinformatic analyses. H.N. and E.E.S. performed biochemical assays and substrate syntheses. All authors analyzed and discussed the results. H.N., E.E.S., and E.P.B. prepared the manuscript.

Corresponding author

Correspondence to Emily P Balskus.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–10 and Supplementary Figures 1–29 (PDF 4208 kb)

Supplementary Note

Supplementary Procedures (PDF 2016 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, H., Schultz, E. & Balskus, E. A new strategy for aromatic ring alkylation in cylindrocyclophane biosynthesis. Nat Chem Biol 13, 916–921 (2017). https://doi.org/10.1038/nchembio.2421

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2421

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing