Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A small-molecule allosteric inhibitor of Mycobacterium tuberculosis tryptophan synthase

Abstract

New antibiotics with novel targets are greatly needed. Bacteria have numerous essential functions, but only a small fraction of such processes—primarily those involved in macromolecular synthesis—are inhibited by current drugs. Targeting metabolic enzymes has been the focus of recent interest, but effective inhibitors have been difficult to identify. We describe a synthetic azetidine derivative, BRD4592, that kills Mycobacterium tuberculosis (Mtb) through allosteric inhibition of tryptophan synthase (TrpAB), a previously untargeted, highly allosterically regulated enzyme. BRD4592 binds at the TrpAB α–β-subunit interface and affects multiple steps in the enzyme's overall reaction, resulting in inhibition not easily overcome by changes in metabolic environment. We show that TrpAB is required for the survival of Mtb and Mycobacterium marinum in vivo and that this requirement may be independent of an adaptive immune response. This work highlights the effectiveness of allosteric inhibition for targeting proteins that are naturally highly dynamic and that are essential in vivo, despite their apparent dispensability under in vitro conditions, and suggests a framework for the discovery of a next generation of allosteric inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BRD4592 activity against Mtb.
Figure 2: BRD4592 inhibition of TrpAB in vitro.
Figure 3: BRD4592 stabilizes closed, active states of the β-subunit.
Figure 4: Crystal structures of Mtb TrpAB.
Figure 5: TrpAB is required for survival of Mtb in various conditions.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. WHO. Global Tuberculosis Report 2015 (World Health Organization, Geneva, Switzerland, 2015).

  2. Zumla, A., Nahid, P. & Cole, S.T. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov. 12, 388–404 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Mdluli, K., Kaneko, T. & Upton, A. The tuberculosis drug discovery and development pipeline and emerging drug targets. Cold Spring Harb. Perspect. Med. 5, a021154 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Katsuno, K. et al. Hit and lead criteria in drug discovery for infectious diseases of the developing world. Nat. Rev. Drug Discov. 14, 751–758 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Andries, K. et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307, 223–227 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Matsumoto, M. et al. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med. 3, e466 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Manjunatha, U., Boshoff, H.I.M. & Barry, C.E. The mechanism of action of PA-824: novel insights from transcriptional profiling. Commun. Integr. Biol. 2, 215–218 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stanley, S.A. et al. Identification of novel inhibitors of M. tuberculosis growth using whole cell based high-throughput screening. ACS Chem. Biol. 7, 1377–1384 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grzegorzewicz, A.E. et al. Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nat. Chem. Biol. 8, 334–341 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Christophe, T. et al. High content screening identifies decaprenyl-phosphoribose 2′ epimerase as a target for intracellular antimycobacterial inhibitors. PLoS Pathog. 5, e1000645 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Stanley, S.A. et al. Diarylcoumarins inhibit mycolic acid biosynthesis and kill Mycobacterium tuberculosis by targeting FadD32. Proc. Natl. Acad. Sci. USA 110, 11565–11570 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wilson, R. et al. Antituberculosis thiophenes define a requirement for Pks13 in mycolic acid biosynthesis. Nat. Chem. Biol. 9, 499–506 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dunn, M.F. Allosteric regulation of substrate channeling and catalysis in the tryptophan synthase bienzyme complex. Arch. Biochem. Biophys. 519, 154–166 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dunn, M.F. et al. The tryptophan synthase bienzyme complex transfers indole between the α- and β-sites via a 25–30 Å long tunnel. Biochemistry 29, 8598–8607 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Anderson, K.S., Miles, E.W. & Johnson, K.A. Serine modulates substrate channeling in tryptophan synthase. A novel intersubunit triggering mechanism. J. Biol. Chem. 266, 8020–8033 (1991).

    CAS  PubMed  Google Scholar 

  16. Niks, D. et al. Allostery and substrate channeling in the tryptophan synthase bienzyme complex: evidence for two subunit conformations and four quaternary states. Biochemistry 52, 6396–6411 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Merino, E., Jensen, R.A. & Yanofsky, C. Evolution of bacterial trp operons and their regulation. Curr. Opin. Microbiol. 11, 78–86 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Akashi, H. & Gojobori, T. Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc. Natl. Acad. Sci. USA 99, 3695–3700 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ngo, H. et al. Synthesis and characterization of allosteric probes of substrate channeling in the tryptophan synthase bienzyme complex. Biochemistry 46, 7713–7727 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Lane, A.N. & Kirschner, K. The catalytic mechanism of tryptophan synthase from Escherichia coli. Kinetics of the reaction of indole with the enzyme–L-serine complexes. Eur. J. Biochem. 129, 571–582 (1983).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, Y.J. et al. Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing. Cell 155, 1296–1308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Burke, M.D. & Schreiber, S.L. A planning strategy for diversity-oriented synthesis. Angew. Chem. Int. Ed. Engl. 43, 46–58 (2004).

    Article  PubMed  CAS  Google Scholar 

  23. Koul, A. et al. Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism. Nat. Commun. 5, 3369 (2014).

    Article  PubMed  CAS  Google Scholar 

  24. Creighton, T.E. A steady-state kinetic investigation of the reaction mechanism of the tryptophan synthetase of Escherichia coli. Eur. J. Biochem. 13, 1–10 (1970).

    Article  CAS  PubMed  Google Scholar 

  25. Copeland, R.A. Evaluation of Enzyme Inhibition in Drug Discovery 2nd edn. (John Wiley & Sons, 2013).

  26. Kirschner, K., Wiskocil, R.L., Foehn, M. & Rezeau, L. The tryptophan synthase from Escherichia coli. An improved purification procedure for the α-subunit and binding studies with substrate analogues. Eur. J. Biochem. 60, 513–523 (1975).

    Article  CAS  PubMed  Google Scholar 

  27. Hilario, E. et al. Visualizing the tunnel in tryptophan synthase with crystallography: insights into a selective filter for accommodating indole and rejecting water. Biochim. Biophys. Acta 1864, 268–279 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Spyrakis, F., Raboni, S., Cozzini, P., Bettati, S. & Mozzarelli, A. Allosteric communication between α and β subunits of tryptophan synthase: modelling the open-closed transition of the α subunit. Biochim. Biophys. Acta. 1764, 1102–1109 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Ogasahara, K., Hiraga, K., Ito, W., Miles, E.W. & Yutani, K. Origin of the mutual activation of the α and β2 subunits in the α2 β2 complex of tryptophan synthase. Effect of alanine or glycine substitutions at proline residues in the α subunit. J. Biol. Chem. 267, 5222–5228 (1992).

    CAS  PubMed  Google Scholar 

  30. Rowlett, R. et al. Mutations in the contact region between the α and β subunits of tryptophan synthase alter subunit interaction and intersubunit communication. Biochemistry 37, 2961–2968 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Harris, R.M., Ngo, H. & Dunn, M.F. Synergistic effects on escape of a ligand from the closed tryptophan synthase bienzyme complex. Biochemistry 44, 16886–16895 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Parish, T. Starvation survival response of Mycobacterium tuberculosis. J. Bacteriol. 185, 6702–6706 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Swaim, L.E. et al. Mycobacterium marinum infection of adult zebrafish causes caseating granulomatous tuberculosis and is moderated by adaptive immunity. Infect. Immun. 74, 6108–6117 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hess, I. & Boehm, T. Intravital imaging of thymopoiesis reveals dynamic lympho-epithelial interactions. Immunity 36, 298–309 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Wolf, A.J. et al. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J. Exp. Med. 205, 105–115 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Peracchi, A. & Mozzarelli, A. Exploring and exploiting allostery: models, evolution, and drug targeting. Biochim. Biophys. Acta 1814, 922–933 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Murima, P., McKinney, J.D. & Pethe, K. Targeting bacterial central metabolism for drug development. Chem. Biol. 21, 1423–1432 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. DeLaBarre, B., Hurov, J., Cianchetta, G., Murray, S. & Dang, L. Action at a distance: allostery and the development of drugs to target cancer cell metabolism. Chem. Biol. 21, 1143–1161 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Chen, Y.-N.P. et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature 535, 148–152 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Kasbekar, M. et al. Selective small molecule inhibitor of the Mycobacterium tuberculosis fumarate hydratase reveals an allosteric regulatory site. Proc. Natl. Acad. Sci. USA 113, 7503–7508 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nussinov, R. & Tsai, C.-J. Allostery in disease and in drug discovery. Cell 153, 293–305 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Turner, K.H., Wessel, A.K., Palmer, G.C., Murray, J.L. & Whiteley, M. Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum. Proc. Natl. Acad. Sci. USA 112, 4110–4115 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. D'Elia, M.A., Pereira, M.P. & Brown, E.D. Are essential genes really essential? Trends Microbiol. 17, 433–438 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Lee, S.A. et al. General and condition-specific essential functions of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 112, 5189–5194 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cornish-Bowden, A. Why is uncompetitive inhibition so rare? A possible explanation, with implications for the design of drugs and pesticides. FEBS Lett. 203, 3–6 (1986).

    Article  CAS  PubMed  Google Scholar 

  46. Kim, Y. et al. High-throughput protein purification and quality assessment for crystallization. Methods 55, 12–28 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Eschenfeldt, W.H., Lucy, S., Millard, C.S., Joachimiak, A. & Mark, I.D. A family of LIC vectors for high-throughput cloning and purification of proteins. Methods Mol. Biol. 498, 105–115 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Klock, H.E. & Lesley, S.A. The Polymerase Incomplete Primer Extension (PIPE) method applied to high-throughput cloning and site-directed mutagenesis. Methods Mol. Biol. 498, 91–103 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Brzović, P.S., Ngo, K. & Dunn, M.F. Allosteric interactions coordinate catalytic activity between successive metabolic enzymes in the tryptophan synthase bienzyme complex. Biochemistry 31, 3831–3839 (1992).

    Article  PubMed  Google Scholar 

  50. Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution—from diffraction images to an initial model in minutes. Acta Crystallogr. D Biol. Crystallogr. 62, 859–866 (2006).

    Article  PubMed  CAS  Google Scholar 

  51. French, S. & Wilson, K. On the treatment of negative intensity observations. Acta Crystallogr. A 34, 517–525 (1978).

    Article  Google Scholar 

  52. Padilla, J.E. & Yeates, T.O. A statistic for local intensity differences: robustness to anisotropy and pseudo-centering and utility for detecting twinning. Acta Crystallogr. D Biol. Crystallogr. 59, 1124–1130 (2003).

    Article  PubMed  Google Scholar 

  53. Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McCoy, A.J. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr. D Biol. Crystallogr. 63, 32–41 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  CAS  Google Scholar 

  57. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Chwastyk, M., Jaskolski, M. & Cieplak, M. Structure-based analysis of thermodynamic and mechanical properties of cavity-containing proteins—case study of plant pathogenesis-related proteins of class 10. FEBS J. 281, 416–429 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Nüsslein-Volhard, C. & Dahm, R. Zebrafish: A Practical Approach (Oxford University Press, 2002).

Download references

Acknowledgements

We thank J. Gomez, M. Serrano-Wu, and B. Hubbard for helpful discussion. We would also like to thank S. Minami for assistance with in vivo studies. This work was supported by the Broad Institute Tuberculosis donor group, the Pershing Square Foundation, the Bill and Melinda Gates Foundation (grant OPP1032518 to S.L.S.), the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services (HHSN272200700058C and HHSN272201200026C to A.J.) and the US Department of Energy, Office of Biological and Environmental Research (contract DE-AC02-06CH11357, A.J.). For this work, the University of Chicago is a subgrantee of Structural Genomics Consortium under a Bill and Melinda Gates Foundation grant for the Structure-Guided Drug Discovery Coalition (A.J. and K.M.).

Author information

Authors and Affiliations

Authors

Contributions

S.W. performed experiments with Mtb as well as kinetic and biophysical experiments with TrpAB. P.P.N. was responsible for chemistry. K.M., N.I.M., R.P.J., and A.J. were responsible for protein expression and purification, X-ray crystallography, and structure refinement and analysis. S.E.J. and B.B. developed and performed LC-MS analysis of kinetic assays. V.K.K. and S.W. performed calorimetry. N.S., A.E.C., S.C., and S.W. performed in vivo experiments. P.M. contributed to structural analysis and modeling. S.L.F., A.J., S.L.S., and D.T.H. advised on experiments and interpretation and together with S.W., K.M., and P.P.N. wrote the paper.

Corresponding author

Correspondence to Deborah T Hung.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–4 and Supplementary Figures 1–12 and Supplementary Note. (PDF 10997 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wellington, S., Nag, P., Michalska, K. et al. A small-molecule allosteric inhibitor of Mycobacterium tuberculosis tryptophan synthase. Nat Chem Biol 13, 943–950 (2017). https://doi.org/10.1038/nchembio.2420

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2420

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research