Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Monitoring thioredoxin redox with a genetically encoded red fluorescent biosensor

Abstract

Thioredoxin (Trx) is one of the two major thiol antioxidants, playing essential roles in redox homeostasis and signaling. Despite its importance, there is a lack of methods for monitoring Trx redox dynamics in live cells, hindering a better understanding of physiological and pathological roles of the Trx redox system. In this work, we developed the first genetically encoded fluorescent biosensor for Trx redox by engineering a redox relay between the active-site cysteines of human Trx1 and rxRFP1, a redox-sensitive red fluorescent protein. We used the resultant biosensor—TrxRFP1—to selectively monitor perturbations of Trx redox in various mammalian cell lines. We subcellularly localized TrxRFP1 to image compartmentalized Trx redox changes. We further combined TrxRFP1 with a green fluorescent Grx1-roGFP2 biosensor to simultaneously monitor Trx and glutathione redox dynamics in live cells in response to chemical and physiologically relevant stimuli.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design and fluorescence characterization of TrxRFP biosensors.
Figure 2: Characterization of TrxRFP1 in HEK 293T cells.
Figure 3: Subcellularly localized TrxRFP1.
Figure 4: Use of TrxRFP1 in various mammalian cell lines.
Figure 5: Simultaneous monitoring of thioredoxin and glutathione redox dynamics using TrxRFP1 and Grx1-roGFP2.
Figure 6: Responses of TrxRFP1 to physiological stimuli in HEK 293T cells.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

References

  1. Lu, J. & Holmgren, A. The thioredoxin antioxidant system. Free Radic. Biol. Med. 66, 75–87 (2014).

    CAS  PubMed  Google Scholar 

  2. Sengupta, R. & Holmgren, A. Thioredoxin and glutaredoxin-mediated redox regulation of ribonucleotide reductase. World J. Biol. Chem. 5, 68–74 (2014).

    PubMed  PubMed Central  Google Scholar 

  3. Matthews, J.R., Wakasugi, N., Virelizier, J.L., Yodoi, J. & Hay, R.T. Thioredoxin regulates the DNA binding activity of NF-κ B by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res. 20, 3821–3830 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wei, S.J. et al. Thioredoxin nuclear translocation and interaction with redox factor-1 activates the activator protein-1 transcription factor in response to ionizing radiation. Cancer Res. 60, 6688–6695 (2000).

    CAS  PubMed  Google Scholar 

  5. Saitoh, M. et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 17, 2596–2606 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ma, X.X. et al. Structural plasticity of the thioredoxin recognition site of yeast methionine S-sulfoxide reductase Mxr1. J. Biol. Chem. 286, 13430–13437 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gonzalez Porqué, P., Baldesten, A. & Reichard, P. The involvement of the thioredoxin system in the reduction of methionine sulfoxide and sulfate. J. Biol. Chem. 245, 2371–2374 (1970).

    PubMed  Google Scholar 

  8. Sido, B. et al. Potential role of thioredoxin in immune responses in intestinal lamina propria T lymphocytes. Eur. J. Immunol. 35, 408–417 (2005).

    CAS  PubMed  Google Scholar 

  9. Masutani, H., Ueda, S. & Yodoi, J. The thioredoxin system in retroviral infection and apoptosis. Cell Death Differ. 12 (Suppl. 1), 991–998 (2005).

    CAS  PubMed  Google Scholar 

  10. Lu, J. et al. Inhibition of bacterial thioredoxin reductase: an antibiotic mechanism targeting bacteria lacking glutathione. FASEB J. 27, 1394–1403 (2013).

    CAS  PubMed  Google Scholar 

  11. Gallegos, A. et al. Transfection with human thioredoxin increases cell proliferation and a dominant-negative mutant thioredoxin reverses the transformed phenotype of human breast cancer cells. Cancer Res. 56, 5765–5770 (1996).

    CAS  PubMed  Google Scholar 

  12. Tonissen, K.F. & Di Trapani, G. Thioredoxin system inhibitors as mediators of apoptosis for cancer therapy. Mol. Nutr. Food Res. 53, 87–103 (2009).

    CAS  PubMed  Google Scholar 

  13. Shalev, A. Minireview: Thioredoxin-interacting protein: regulation and function in the pancreatic β-cell. Mol. Endocrinol. 28, 1211–1220 (2014).

    PubMed  PubMed Central  Google Scholar 

  14. Arnér, E.S. & Holmgren, A. The thioredoxin system in cancer. Semin. Cancer Biol. 16, 420–426 (2006).

    PubMed  Google Scholar 

  15. Mahmood, D.F., Abderrazak, A., El Hadri, K., Simmet, T. & Rouis, M. The thioredoxin system as a therapeutic target in human health and disease. Antioxid. Redox Signal. 19, 1266–1303 (2013).

    CAS  PubMed  Google Scholar 

  16. Garcia-Garcia, A., Zavala-Flores, L., Rodriguez-Rocha, H. & Franco, R. Thiol-redox signaling, dopaminergic cell death, and Parkinson's disease. Antioxid. Redox Signal. 17, 1764–1784 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Schwarzländer, M., Dick, T.P., Meyer, A.J. & Morgan, B. Dissecting redox biology using fluorescent protein sensors. Antioxid. Redox Signal. 24, 680–712 (2016).

    PubMed  Google Scholar 

  18. Ren, W. & Ai, H.W. Genetically encoded fluorescent redox probes. Sensors (Basel) 13, 15422–15433 (2013).

    Google Scholar 

  19. Meyer, A.J. & Dick, T.P. Fluorescent protein-based redox probes. Antioxid. Redox Signal. 13, 621–650 (2010).

    CAS  PubMed  Google Scholar 

  20. Ostergaard, H., Henriksen, A., Hansen, F.G. & Winther, J.R. Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein. EMBO J. 20, 5853–5862 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hanson, G.T. et al. Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J. Biol. Chem. 279, 13044–13053 (2004).

    CAS  PubMed  Google Scholar 

  22. Fan, Y., Chen, Z. & Ai, H.W. Monitoring redox dynamics in living cells with a redox-sensitive red fluorescent protein. Anal. Chem. 87, 2802–2810 (2015).

    CAS  PubMed  Google Scholar 

  23. Fan, Y. & Ai, H.W. Development of redox-sensitive red fluorescent proteins for imaging redox dynamics in cellular compartments. Anal. Bioanal. Chem. 408, 2901–2911 (2016).

    CAS  PubMed  Google Scholar 

  24. Belousov, V.V. et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3, 281–286 (2006).

    CAS  PubMed  Google Scholar 

  25. Gutscher, M. et al. Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J. Biol. Chem. 284, 31532–31540 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Morgan, B. et al. Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes. Nat. Chem. Biol. 12, 437–443 (2016).

    CAS  PubMed  Google Scholar 

  27. Zhao, B.S. et al. A highly selective fluorescent probe for visualization of organic hydroperoxides in living cells. J. Am. Chem. Soc. 132, 17065–17067 (2010).

    CAS  PubMed  Google Scholar 

  28. Chen, Z.J., Ren, W., Wright, Q.E. & Ai, H.W. Genetically encoded fluorescent probe for the selective detection of peroxynitrite. J. Am. Chem. Soc. 135, 14940–14943 (2013).

    CAS  PubMed  Google Scholar 

  29. Chen, S., Chen, Z.J., Ren, W. & Ai, H.W. Reaction-based genetically encoded fluorescent hydrogen sulfide sensors. J. Am. Chem. Soc. 134, 9589–9592 (2012).

    CAS  PubMed  Google Scholar 

  30. Chen, Z.J. & Ai, H.W. A highly responsive and selective fluorescent probe for imaging physiological hydrogen sulfide. Biochemistry 53, 5966–5974 (2014).

    CAS  PubMed  Google Scholar 

  31. Björnberg, O., Østergaard, H. & Winther, J.R. Mechanistic insight provided by glutaredoxin within a fusion to redox-sensitive yellow fluorescent protein. Biochemistry 45, 2362–2371 (2006).

    PubMed  Google Scholar 

  32. Gutscher, M. et al. Real-time imaging of the intracellular glutathione redox potential. Nat. Methods 5, 553–559 (2008).

    CAS  PubMed  Google Scholar 

  33. Ungerstedt, J., Du, Y., Zhang, H., Nair, D. & Holmgren, A. In vivo redox state of human thioredoxin and redox shift by the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). Free Radic. Biol. Med. 53, 2002–2007 (2012).

    CAS  PubMed  Google Scholar 

  34. Du, Y., Zhang, H., Zhang, X., Lu, J. & Holmgren, A. Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system. J. Biol. Chem. 288, 32241–32247 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Shaner, N.C. et al. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat. Methods 5, 545–551 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Giustarini, D., Dalle-Donne, I., Milzani, A., Fanti, P. & Rossi, R. Analysis of GSH and GSSG after derivatization with N-ethylmaleimide. Nat. Protoc. 8, 1660–1669 (2013).

    CAS  PubMed  Google Scholar 

  37. Du, Y., Zhang, H., Lu, J. & Holmgren, A. Glutathione and glutaredoxin act as a backup of human thioredoxin reductase 1 to reduce thioredoxin 1 preventing cell death by aurothioglucose. J. Biol. Chem. 287, 38210–38219 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hill, K.E., McCollum, G.W., Boeglin, M.E. & Burk, R.F. Thioredoxin reductase activity is decreased by selenium deficiency. Biochem. Biophys. Res. Commun. 234, 293–295 (1997).

    CAS  PubMed  Google Scholar 

  39. Jurado, J., Prieto-Alamo, M.J., Madrid-Rísquez, J. & Pueyo, C. Absolute gene expression patterns of thioredoxin and glutaredoxin redox systems in mouse. J. Biol. Chem. 278, 45546–45554 (2003).

    CAS  PubMed  Google Scholar 

  40. Bilan, D.S. et al. HyPer-3: a genetically encoded H(2)O(2) probe with improved performance for ratiometric and fluorescence lifetime imaging. ACS Chem. Biol. 8, 535–542 (2013).

    CAS  PubMed  Google Scholar 

  41. Spyrou, G., Enmark, E., Miranda-Vizuete, A. & Gustafsson, J. Cloning and expression of a novel mammalian thioredoxin. J. Biol. Chem. 272, 2936–2941 (1997).

    CAS  PubMed  Google Scholar 

  42. Rackham, O. et al. Substrate and inhibitor specificities differ between human cytosolic and mitochondrial thioredoxin reductases: Implications for development of specific inhibitors. Free Radic. Biol. Med. 50, 689–699 (2011).

    CAS  PubMed  Google Scholar 

  43. Kumar, K.K., Karnati, S., Reddy, M.B. & Chandramouli, R. Caco-2 cell lines in drug discovery- an updated perspective. J. Basic Clin. Pharm. 1, 63–69 (2010).

    PubMed  PubMed Central  Google Scholar 

  44. Lu, J., Chew, E.H. & Holmgren, A. Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc. Natl. Acad. Sci. USA 104, 12288–12293 (2007).

    CAS  PubMed  Google Scholar 

  45. Seefeldt, T. et al. Characterization of a novel dithiocarbamate glutathione reductase inhibitor and its use as a tool to modulate intracellular glutathione. J. Biol. Chem. 284, 2729–2737 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bae, Y.S. et al. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem. 272, 217–221 (1997).

    CAS  PubMed  Google Scholar 

  47. Østergaard, H., Tachibana, C. & Winther, J.R. Monitoring disulfide bond formation in the eukaryotic cytosol. J. Cell Biol. 166, 337–345 (2004).

    PubMed  PubMed Central  Google Scholar 

  48. Kemp, M., Go, Y.M. & Jones, D.P. Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic. Biol. Med. 44, 921–937 (2008).

    CAS  PubMed  Google Scholar 

  49. Biot, C., Dessolin, J., Grellier, P. & Davioud-Charvet, E. Double-drug development against antioxidant enzymes from Plasmodium falciparum. Redox Rep. 8, 280–283 (2003).

    CAS  PubMed  Google Scholar 

  50. Wilson, D.S. & Keefe, A.D. Random mutagenesis by PCR. Curr. Protoc. Mol. Biol. 51, 8.3.1–8.3.9 (2001).

    Google Scholar 

  51. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  PubMed  Google Scholar 

  52. Bar-Noy, S., Gorlatov, S.N. & Stadtman, T.C. Overexpression of wild type and SeCys/Cys mutant of human thioredoxin reductase in E. coli: the role of selenocysteine in the catalytic activity. Free Radic. Biol. Med. 30, 51–61 (2001).

    CAS  PubMed  Google Scholar 

  53. Kardash, E., Bandemer, J. & Raz, E. Imaging protein activity in live embryos using fluorescence resonance energy transfer biosensors. Nat. Protoc. 6, 1835–1846 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the National Institutes of Health (R01GM118675 and R21EB021651) and the National Science Foundation (CHE-1351933).

Author information

Authors and Affiliations

Authors

Contributions

H.A. conceived and supervised the project. Y.F. performed all experiments, except for that M.M. assisted Y.F. with cell culture and transfection and M.X.W. assisted Y.F. with plasmid preparation and SDS–PAGE. H.A. and Y.F. analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Hui-wang Ai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Makar, M., Wang, M. et al. Monitoring thioredoxin redox with a genetically encoded red fluorescent biosensor. Nat Chem Biol 13, 1045–1052 (2017). https://doi.org/10.1038/nchembio.2417

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2417

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing