Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A scalable platform to identify fungal secondary metabolites and their gene clusters

Abstract

The genomes of filamentous fungi contain up to 90 biosynthetic gene clusters (BGCs) encoding diverse secondary metabolites—an enormous reservoir of untapped chemical potential. However, the recalcitrant genetics, cryptic expression, and unculturability of these fungi prevent scientists from systematically exploiting these gene clusters and harvesting their products. As heterologous expression of fungal BGCs is largely limited to the expression of single or partial clusters, we established a scalable process for the expression of large numbers of full-length gene clusters, called FAC-MS. Using fungal artificial chromosomes (FACs) and metabolomic scoring (MS), we screened 56 secondary metabolite BGCs from diverse fungal species for expression in Aspergillus nidulans. We discovered 15 new metabolites and assigned them with confidence to their BGCs. Using the FAC-MS platform, we extensively characterized a new macrolactone, valactamide A, and its hybrid nonribosomal peptide synthetase–polyketide synthase (NRPS–PKS). The ability to regularize access to fungal secondary metabolites at an unprecedented scale stands to revitalize drug discovery platforms with renewable sources of natural products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The FAC-MS platform.
Figure 2: Analysis of benzomalvin A/D biosynthesis.
Figure 3: Analysis of three gene clusters on AtFAC9J20.
Figure 4: Structure and proposed biosynthesis of valactamide A (facms0017).

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

References

  1. Blackwell, M. The fungi: 1, 2, 3 . . . 5.1 million species? Am. J. Bot. 98, 426–438 (2011).

    Article  PubMed  Google Scholar 

  2. Khaldi, N. et al. SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet. Biol. 47, 736–741 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Inglis, D.O. et al. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae. BMC Microbiol. 13, 91 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Han, X., Chakrabortti, A., Zhu, J., Liang, Z.X. & Li, J. Sequencing and functional annotation of the whole genome of the filamentous fungus Aspergillus westerdijkiae. BMC Genomics 17, 633 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Andersen, M.R. et al. Accurate prediction of secondary metabolite gene clusters in filamentous fungi. Proc. Natl. Acad. Sci. USA 110, E99–E107 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Brown, D.W. & Proctor, R.H. Insights into natural products biosynthesis from analysis of 490 polyketide synthases from Fusarium. Fungal Genet. Biol. 89, 37–51 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Medema, M.H. et al. Minimum information about a biosynthetic gene cluster. Nat. Chem. Biol. 11, 625–631 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Anyaogu, D.C. & Mortensen, U.H. Heterologous production of fungal secondary metabolites in Aspergilli. Front. Microbiol. 6, 77 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bailey, A.M. et al. Characterisation of 3-methylorcinaldehyde synthase (MOS) in Acremonium strictum: first observation of a reductive release mechanism during polyketide biosynthesis. Chem. Commun. (Camb.) 2007, 4053–4055 (2007).

    Article  CAS  Google Scholar 

  10. Holm, D.K. et al. Molecular and chemical characterization of the biosynthesis of the 6-MSA-derived meroterpenoid yanuthone D in Aspergillus niger. Chem. Biol. 21, 519–529 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Richter, L. et al. Engineering of Aspergillus niger for the production of secondary metabolites. Fungal Biol. Biotechnol. http://dx.doi.org/10.1186/s40694-014-0004-9 (2014).

  12. Nielsen, M.T. et al. Heterologous reconstitution of the intact geodin gene cluster in Aspergillus nidulans through a simple and versatile PCR based approach. PLoS One 8, e72871 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Heneghan, M.N. et al. First heterologous reconstruction of a complete functional fungal biosynthetic multigene cluster. ChemBioChem 11, 1508–1512 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Chiang, Y.M. et al. An efficient system for heterologous expression of secondary metabolite genes in Aspergillus nidulans. J. Am. Chem. Soc. 135, 7720–7731 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Smith, D.J., Burnham, M.K., Edwards, J., Earl, A.J. & Turner, G. Cloning and heterologous expression of the penicillin biosynthetic gene cluster from Penicillium chrysogenum. Bio/Technology 8, 39–41 (1990).

    CAS  Google Scholar 

  16. Gressler, M., Hortschansky, P., Geib, E. & Brock, M. A new high-performance heterologous fungal expression system based on regulatory elements from the Aspergillus terreus terrein gene cluster. Front. Microbiol. 6, 184 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lazarus, C.M., Williams, K. & Bailey, A.M. Reconstructing fungal natural product biosynthetic pathways. Nat. Prod. Rep. 31, 1339–1347 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Weber, T. et al. antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43, W237–W243 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bok, J.W. et al. Fungal artificial chromosomes for mining of the fungal secondary metabolome. BMC Genomics 16, 343 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Samson, R.A. et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud. Mycol. 78, 141–173 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smith, C.A., Want, E.J., O'Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Ridder, L. et al. Automatic chemical structure annotation of an LC-MS(n) based metabolic profile from green tea. Anal. Chem. 85, 6033–6040 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Sun, H.H., Barrow, C.J. & Cooper, R. Benzomalvin D, a new 1,4-benzodiazepine atropisomer. J. Nat. Prod. 58, 1575–1580 (1995).

    Article  CAS  Google Scholar 

  24. Jang, J.P. et al. Benzomalvin E, an indoleamine 2,3-dioxygenase inhibitor isolated from Penicillium sp. FN070315. J. Antibiot. (Tokyo) 65, 215–217 (2012).

    Article  CAS  Google Scholar 

  25. Sun, H.H., Barrow, C.J., Sedlock, D.M., Gillum, A.M. & Cooper, R. Benzomalvins, new substance P inhibitors from a Penicillium sp. J. Antibiot. (Tokyo) 47, 515–522 (1994).

    Article  CAS  Google Scholar 

  26. Wei, H. et al. Cytotoxic sesterterpenes, 6-epi-ophiobolin G and 6-epi-ophiobolin N, from marine derived fungus Emericella variecolor GF10. Tetrahedron 60, 6015–6019 (2004).

    Article  CAS  Google Scholar 

  27. Yoganathan, K. et al. Inhibition of the human chemokine receptor CCR5 by variecolin and variecolol and isolation of four new variecolin analogues, emericolins A-D, from Emericella aurantiobrunnea. J. Nat. Prod. 67, 1681–1684 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, H.-B. et al. Ophiobolin sesterterpenoids and pyrrolidine alkaloids from the sponge-derived fungus Aspergillus ustus. Helv. Chim. Acta 94, 623–631 (2011).

    Article  CAS  Google Scholar 

  29. Molander, G.A., Quirmbach, M.S., Silva, L.F. Jr., Spencer, K.C. & Balsells, J. Toward the total synthesis of variecolin. Org. Lett. 3, 2257–2260 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Stachelhaus, T., Mootz, H.D. & Marahiel, M.A. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem. Biol. 6, 493–505 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Chiang, Y.M. et al. Molecular genetic mining of the Aspergillus secondary metabolome: discovery of the emericellamide biosynthetic pathway. Chem. Biol. 15, 527–532 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cacho, R.A. et al. Understanding programming of fungal iterative polyketide synthases: the biochemical basis for regioselectivity by the methyltransferase domain in the lovastatin megasynthase. J. Am. Chem. Soc. 137, 15688–15691 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meehan, M.J. et al. FT-ICR-MS characterization of intermediates in the biosynthesis of the α-methylbutyrate side chain of lovastatin by the 277 kDa polyketide synthase LovF. Biochemistry 50, 287–299 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Zou, Y. et al. Methylation-dependent acyl transfer between polyketide synthase and nonribosomal peptide synthetase modules in fungal natural product biosynthesis. Org. Lett. 16, 6390–6393 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gatto, G.J. Jr., McLoughlin, S.M., Kelleher, N.L. & Walsh, C.T. Elucidating the substrate specificity and condensation domain activity of FkbP, the FK520 pipecolate-incorporating enzyme. Biochemistry 44, 5993–6002 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Gao, X. et al. Cyclization of fungal nonribosomal peptides by a terminal condensation-like domain. Nat. Chem. Biol. 8, 823–830 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Henke, M.T. & Kelleher, N.L. Modern mass spectrometry for synthetic biology and structure-based discovery of natural products. Nat. Prod. Rep. 33, 942–950 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bouslimani, A., Sanchez, L.M., Garg, N. & Dorrestein, P.C. Mass spectrometry of natural products: current, emerging and future technologies. Nat. Prod. Rep. 31, 718–729 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Albright, J.C. et al. Large-scale metabolomics reveals a complex response of Aspergillus nidulans to epigenetic perturbation. ACS Chem. Biol. 10, 1535–1541 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T.R. & Neumann, S. CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal. Chem. 84, 283–289 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Bok, J.W. & Keller, N.P. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot. Cell 3, 527–535 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kessner, D., Chambers, M., Burke, R., Agus, D. & Mallick, P. ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24, 2534–2536 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Running, W. Computer software reviews. Chapman and Hall Dictionary of Natural Products on CD-ROM. J. Chem. Inf. Comput. Sci. 33, 934–935 (1993).

    Article  Google Scholar 

  45. Laatsch, H. Antibase 2011 (Wiley VCH, 2011).

  46. Copeland, N.G., Jenkins, N.A. & Court, D.L. Recombineering: a powerful new tool for mouse functional genomics. Nat. Rev. Genet. 2, 769–779 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Muyrers, J.P., Zhang, Y. & Stewart, A.F. Techniques: recombinogenic engineering—new options for cloning and manipulating DNA. Trends Biochem. Sci. 26, 325–331 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Ames, B.D. & Walsh, C.T. Anthranilate-activating modules from fungal nonribosomal peptide assembly lines. Biochemistry 49, 3351–3365 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Al-Said, N.H. Effective formal synthesis of benzomalvin A. Monatsh. Chem. 141, 1249–1251 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the US National Institutes of Health (National Institute of Allergy and Infectious Diseases SBIR award in the form of grant R44AI094885 to C.C.W., J.W.B., and N.L.K.; grant R01AT009143 to N.L.K.; grant R01-AI065728 to N.P.K.; grant 5T32GM105538-04 to G.P.M.). NMR instrumentation and assistance was provided by the Integrated Molecular Structure Education and Research Center (IMSERC) at Northwestern University.

Author information

Authors and Affiliations

Authors

Contributions

R.Y., C.C.W., M.L., and M.N.I. worked on the FAC library assembly, FAC end sequencing, FAC DNA preparation, and FAC engineering. C.C.W., J.M.P., C.C., and M.L. carried out fungal secondary metabolite gene cluster prediction, FAC bioinformatic analyses, and FAC next-generation sequencing assembly and annotation. J.W.B., T.V., and K.H.Y. performed the A. nidulans transformation with FACs and prepared samples for metabolite identification and structure determination. K.D.C. and P.G. carried out LC–mass spectrometry analyses. K.D.C. conducted analysis of LC–mass spectrometry data, including development of the analysis pipeline, invention of the FAC-Score, discovery of valactamide A, and bioinformatic analyses of the benzomalvin and valactamide gene clusters, under the supervision of P.M.T. and N.L.K. P.M.T. identified benzomalvin A. G.P.M. carried out total synthesis of benzomalvin A/D. M.H.V., G.P.M., and K.D.C. carried out purification and structural characterization of valactamide A. The paper was written by K.D.C. under the supervision of N.L.K. The Online Methods and supplementary material were prepared by K.D.C., N.P.K., C.C.W., J.W.B., R.Y., G.P.M., M.H.V., and M.T.R. All authors read and approved the final draft of the manuscript. C.C.W., N.P.K., and N.L.K. conceived of and supervised the project.

Corresponding authors

Correspondence to Chengcang C Wu, Nancy P Keller or Neil L Kelleher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–8 and Supplementary Figures 1–23 (PDF 19593 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clevenger, K., Bok, J., Ye, R. et al. A scalable platform to identify fungal secondary metabolites and their gene clusters. Nat Chem Biol 13, 895–901 (2017). https://doi.org/10.1038/nchembio.2408

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2408

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research