Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Parallel evolution of non-homologous isofunctional enzymes in methionine biosynthesis

A Corrigendum to this article was published on 19 September 2017

This article has been updated

Abstract

Experimental validation of enzyme function is crucial for genome interpretation, but it remains challenging because it cannot be scaled up to accommodate the constant accumulation of genome sequences. We tackled this issue for the MetA and MetX enzyme families, phylogenetically unrelated families of acyl-L-homoserine transferases involved in L-methionine biosynthesis. Members of these families are prone to incorrect annotation because MetX and MetA enzymes are assumed to always use acetyl-CoA and succinyl-CoA, respectively. We determined the enzymatic activities of 100 enzymes from diverse species, and interpreted the results by structural classification of active sites based on protein structure modeling. We predict that >60% of the 10,000 sequences from these families currently present in databases are incorrectly annotated, and suggest that acetyl-CoA was originally the sole substrate of these isofunctional enzymes, which evolved to use exclusively succinyl-CoA in the most recent bacteria. We also uncovered a divergent subgroup of MetX enzymes in fungi that participate only in L-cysteine biosynthesis as O-succinyl-L-serine transferases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mapping of the experimentally determined activities of MetA and MetX on a taxonomic cladogram.
Figure 2: Dividing MetX and MetA families into groups with similar active sites.
Figure 3: Biosynthetic roles of MetA and MetX enzymes.
Figure 4: Decision trees for annotation of MetX and MetA enzymes.
Figure 5: Prediction of acyltransferase activities of MetX and MetA in bacteria, archaea and fungi.

Similar content being viewed by others

Accession codes

Primary accessions

European Nucleotide Archive

Referenced accessions

Protein Data Bank

Change history

  • 10 July 2017

    In the version of this article initially published, a sentence in the abstract, "Members of these families are prone to incorrect annotation because MetA and MetX enzymes are assumed to always use acetyl-CoA and succinyl-CoA, respectively," had the order of enzymes MetA and MetX reversed. The sentence should read, "Members of these families are prone to incorrect annotation because MetX and MetA enzymes are assumed to always use acetyl-CoA and succinyl-CoA, respectively." The error has been corrected in the HTML and PDF versions of the article.

References

  1. Galperin, M.Y. & Koonin, E.V. From complete genome sequence to 'complete' understanding? Trends Biotechnol. 28, 398–406 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hanson, A.D., Pribat, A., Waller, J.C. & de Crécy-Lagard, V. 'Unknown' proteins and 'orphan' enzymes: the missing half of the engineering parts list—and how to find it. Biochem. J. 425, 1–11 (2009).

    Article  PubMed  CAS  Google Scholar 

  3. Schnoes, A.M., Brown, S.D., Dodevski, I. & Babbitt, P.C. Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS Comput. Biol. 5, e1000605 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Soskine, M. & Tawfik, D.S. Mutational effects and the evolution of new protein functions. Nat. Rev. Genet. 11, 572–582 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Bastard, K. et al. Revealing the hidden functional diversity of an enzyme family. Nat. Chem. Biol. 10, 42–49 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. de Crecy-Lagard, V. Quality annotations, a key frontier in the microbial sciences. Microbe 11, 303–310 (2016).

    Google Scholar 

  7. Hsiao, T.L., Revelles, O., Chen, L., Sauer, U. & Vitkup, D. Automatic policing of biochemical annotations using genomic correlations. Nat. Chem. Biol. 6, 34–40 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Anton, B.P., Kasif, S., Roberts, R.J. & Steffen, M. Objective: biochemical function. Front. Genet. 5, 210 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Gerlt, J.A. et al. The Enzyme Function Initiative. Biochemistry 50, 9950–9962 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, X. et al. Assignment of function to a domain of unknown function: DUF1537 is a new kinase family in catabolic pathways for acid sugars. Proc. Natl. Acad. Sci. USA 113, E4161–E4169 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ferla, M.P. & Patrick, W.M. Bacterial methionine biosynthesis. Microbiology 160, 1571–1584 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Gophna, U., Bapteste, E., Doolittle, W.F., Biran, D. & Ron, E.Z. Evolutionary plasticity of methionine biosynthesis. Gene 355, 48–57 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. de Berardinis, V. et al. A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1. Mol. Syst. Biol. 4, 174 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Foglino, M., Borne, F., Bally, M., Ball, G. & Patte, J.C. A direct sulfhydrylation pathway is used for methionine biosynthesis in Pseudomonas aeruginosa. Microbiology 141, 431–439 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Rowbury, R.J. The accumulation of O-succinylhomoserine by Escherichia coli and Salmonella typhimurium. J. Gen. Microbiol. 37, 171–180 (1964).

    Article  CAS  PubMed  Google Scholar 

  16. Rowbury, R.J. & Woods, D.D. O-succinylhomoserine as an intermediate in the synthesis of cystathionine by Escherichia coli. J. Gen. Microbiol. 36, 341–358 (1964).

    Article  CAS  PubMed  Google Scholar 

  17. Brush, A. & Paulus, H. The enzymic formation of O-acetylhomoserine in Bacillus subtilis and its regulation by methionine and S-adenosylmethionine. Biochem. Biophys. Res. Commun. 45, 735–741 (1971).

    Article  CAS  PubMed  Google Scholar 

  18. Goudarzi, M. & Born, T.L. Purification and characterization of Thermotoga maritima homoserine transsuccinylase indicates it is a transacetylase. Extremophiles 10, 469–478 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Rotem, O., Biran, D. & Ron, E.Z. Methionine biosynthesis in Agrobacterium tumefaciens: study of the first enzyme. Res. Microbiol. 164, 12–16 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Wyman, A. & Paulus, H. Purification and properties of homoserine transacetylase from Bacillus polymyxa. J. Biol. Chem. 250, 3897–3903 (1975).

    Article  CAS  PubMed  Google Scholar 

  21. Ziegler, K., Yusupov, M., Bishop, B. & Born, T.L. Substrate analysis of homoserine acyltransferase from Bacillus cereus. Biochem. Biophys. Res. Commun. 361, 510–515 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zubieta, C., Arkus, K.A., Cahoon, R.E. & Jez, J.M. A single amino acid change is responsible for evolution of acyltransferase specificity in bacterial methionine biosynthesis. J. Biol. Chem. 283, 7561–7567 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Omelchenko, M.V., Galperin, M.Y., Wolf, Y.I. & Koonin, E.V. Non-homologous isofunctional enzymes: a systematic analysis of alternative solutions in enzyme evolution. Biol. Direct 5, 31 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hitchcock, D.S. et al. Structure-guided discovery of new deaminase enzymes. J. Am. Chem. Soc. 135, 13927–13933 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Lukk, T. et al. Homology models guide discovery of diverse enzyme specificities among dipeptide epimerases in the enolase superfamily. Proc. Natl. Acad. Sci. USA 109, 4122–4127 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. de Melo-Minardi, R.C., Bastard, K. & Artiguenave, F. Identification of subfamily-specific sites based on active sites modeling and clustering. Bioinformatics 26, 3075–3082 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Picardeau, M., Bauby, H. & Saint Girons, I. Genetic evidence for the existence of two pathways for the biosynthesis of methionine in the Leptospira spp. FEMS Microbiol. Lett. 225, 257–262 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, Z., Lindstam, M., Unge, J., Peterson, C. & Lu, G. Potential for dramatic improvement in sequence alignment against structures of remote homologous proteins by extracting structural information from multiple structure alignment. J. Mol. Biol. 332, 127–142 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Hijikata, A., Yura, K., Noguti, T. & Go, M. Revisiting gap locations in amino acid sequence alignments and a proposal for a method to improve them by introducing solvent accessibility. Proteins 79, 1868–1877 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Centeno, N.B., Planas-Iglesias, J. & Oliva, B. Comparative modelling of protein structure and its impact on microbial cell factories. Microb. Cell Fact. 4, 20 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Mirza, I.A., Nazi, I., Korczynska, M., Wright, G.D. & Berghuis, A.M. Crystal structure of homoserine transacetylase from Haemophilus influenzae reveals a new family of α/β-hydrolases. Biochemistry 44, 15768–15773 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Zubieta, C. et al. Crystal structure of homoserine O-succinyltransferase from Bacillus cereus at 2.4 Å resolution. Proteins 68, 999–1005 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Coe, D.M. & Viola, R.E. Assessing the roles of essential functional groups in the mechanism of homoserine succinyltransferase. Arch. Biochem. Biophys. 461, 211–218 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Yamagata, S., D'Andrea, R.J., Fujisaki, S., Isaji, M. & Nakamura, K. Cloning and bacterial expression of the CYS3 gene encoding cystathionine γ-lyase of Saccharomyces cerevisiae and the physicochemical and enzymatic properties of the protein. J. Bacteriol. 175, 4800–4808 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grynberg, M., Topczewski, J., Godzik, A. & Paszewski, A. The Aspergillus nidulans cysA gene encodes a novel type of serine O-acetyltransferase which is homologous to homoserine O-acetyltransferases. Microbiology 146, 2695–2703 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Ma, Y. et al. Six new amino acid-auxotrophic markers for targeted gene integration and disruption in fission yeast. Curr. Genet. 52, 97–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Sohn, M.J. et al. Novel cysteine-centered sulfur metabolic pathway in the thermotolerant methylotrophic yeast Hansenula polymorpha. PLoS One 9, e100725 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Oda, K., Matoba, Y., Kumagai, T., Noda, M. & Sugiyama, M. Crystallographic study to determine the substrate specificity of an L-serine-acetylating enzyme found in the D-cycloserine biosynthetic pathway. J. Bacteriol. 195, 1741–1749 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bogicevic, B. et al. Cysteine biosynthesis in Lactobacillus casei: identification and characterization of a serine acetyltransferase. FEMS Microbiol. Lett. 363, fnw012 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Pedruzzi, I. et al. HAMAP in 2015: updates to the protein family classification and annotation system. Nucleic Acids Res. 43, D1064–D1070 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Gao, B., Mohan, R. & Gupta, R.S. Phylogenomics and protein signatures elucidating the evolutionary relationships among the Gammaproteobacteria. Int. J. Syst. Evol. Microbiol. 59, 234–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Gupta, R.S. Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes. Antonie van Leeuwenhoek 100, 171–182 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jensen, L.J., Ussery, D.W. & Brunak, S. Functionality of system components: conservation of protein function in protein feature space. Genome Res. 13, 2444–2449 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Khersonsky, O., Roodveldt, C. & Tawfik, D.S. Enzyme promiscuity: evolutionary and mechanistic aspects. Curr. Opin. Chem. Biol. 10, 498–508 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Furnham, N., Dawson, N.L., Rahman, S.A., Thornton, J.M. & Orengo, C.A. Large-scale analysis exploring evolution of catalytic machineries and mechanisms in enzyme superfamilies. J. Mol. Biol. 428, 253–267 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kanzaki, H., Kobayashi, M., Nagasawa, T. & Yamada, H. Distribution of two kinds of cystathionine γ-synthase in various bacteria. FEMS Microbiol. Lett. 33, 65–68 (1986).

    CAS  Google Scholar 

  47. Furnham, N., Garavelli, J.S., Apweiler, R. & Thornton, J.M. Missing in action: enzyme functional annotations in biological databases. Nat. Chem. Biol. 5, 521–525 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Huerta-Cepas, J., Dopazo, J. & Gabaldón, T. ETE: a Python environment for tree exploration. BMC Bioinformatics 11, 24 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Asnicar, F., Weingart, G., Tickle, T.L., Huttenhower, C. & Segata, N. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ 3, e1029 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kreimeyer, A. et al. Identification of the last unknown genes in the fermentation pathway of lysine. J. Biol. Chem. 282, 7191–7197 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Stuani, L. et al. Novel metabolic features in Acinetobacter baylyi ADP1 revealed by a multiomics approach. Metabolomics 10, 1223–1238 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sakai, A. et al. Evolution of enzymatic activities in the enolase superfamily: N-succinylamino acid racemase and a new pathway for the irreversible conversion of D- to L-amino acids. Biochemistry 45, 4455–4462 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Trott, O. & Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to L. Stuani, L. Grenot, C. Gazaille, C. Richer, C. Pellé and P. Sirvain for excellent technical assistance. We thank G. Cohen, M. Bouzon-Bloch, M. Stam, A. Calteau, B. Viart and M. Sorokina for helpful discussion on the manuscript. We are indebted to P. Bowe for improvements to the manuscript. We are grateful to E. Coudert and C. Rivoire (the Swiss-Prot Group at the SIB Swiss Institute of Bioinformatics), who updated the HAMAP rules. This work was supported by Commissariat à l'énergie atomique et aux énergies alternatives (CEA), the CNRS and the University of Evry Val d'Essonne.

Author information

Authors and Affiliations

Authors

Contributions

V.d.B. conceived the project. V.d.B., K.B. and A.P. designed and supervised the project and analyzed the data. V.d.B. performed the genome analyses. A.P. designed and supervised the biochemical experiments with input from V.d.B. K.B. conceived and conducted the structural bioinformatics analysis with input from A.Z. A.P.-T., A.M., J.-L.P., C.B. and T.B. carried out the biochemical experiments. A. Debard, V.P. and M.B.-G. carried out the gene cloning, the protein expression and purifications for the whole collection of MetA and MetX enzymes. A.P. and E.D. designed and analyzed the metabolomics experiments, which were conducted by E.D., P.B. and T.B. C.V.-V. chemically synthesized reference compounds. K.B., A.P. and V.d.B. performed the taxonomic analysis, with input from D.V. and F.A. K.B. built the website with input from V.d.B. V.d.B., K.B. and A.P. wrote the manuscript with input from A. Danchin, M.S., A.Z., C.M., D.V. and J.W.

Corresponding author

Correspondence to Véronique de Berardinis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–10 and Supplementary Figures 1–22. (PDF 5186 kb)

Supplementary Data Set 1

Primers and strains used for gene cloning. (XLSX 26 kb)

Supplementary Data Set 2

Data from PROCHECK and PROSA II analysis for homology model validation. (XLSX 422 kb)

Supplementary Data Set 3

IPR008220 (MetX) and IPR005697 (MetA) set classification via the ASMC method. (XLSX 417 kb)

Supplementary Data Set 4

Reannotation of proteins with IPR008220 (MetX) and IPR005697 (MetA) signatures. (XLSX 1732 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastard, K., Perret, A., Mariage, A. et al. Parallel evolution of non-homologous isofunctional enzymes in methionine biosynthesis. Nat Chem Biol 13, 858–866 (2017). https://doi.org/10.1038/nchembio.2397

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2397

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing