Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activity-based probes for functional interrogation of retaining β-glucuronidases

Abstract

Humans express at least two distinct β-glucuronidase enzymes that are involved in disease: exo-acting β-glucuronidase (GUSB), whose deficiency gives rise to mucopolysaccharidosis type VII, and endo-acting heparanase (HPSE), whose overexpression is implicated in inflammation and cancers. The medical importance of these enzymes necessitates reliable methods to assay their activities in tissues. Herein, we present a set of β-glucuronidase-specific activity-based probes (ABPs) that allow rapid and quantitative visualization of GUSB and HPSE in biological samples, providing a powerful tool for dissecting their activities in normal and disease states. Unexpectedly, we find that the supposedly inactive HPSE proenzyme proHPSE is also labeled by our ABPs, leading to surprising insights regarding structural relationships between proHPSE, mature HPSE, and their bacterial homologs. Our results demonstrate the application of β-glucuronidase ABPs in tracking pathologically relevant enzymes and provide a case study of how ABP-driven approaches can lead to discovery of unanticipated structural and biochemical functionality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concept and design of β-glucuronidase-targeting ABPs.
Figure 2: ABP labeling of retaining β-glucuronidases in human spleen lysates.
Figure 3: Human HPSE is readily visualized by fluorescent β-glucuronidase ABPs.
Figure 4: General and endo-specific inhibition of β-glucuronidases as assessed by competitive ABP profiling.
Figure 5: Three-dimensional structure of proHPSE, and its active site interactions with ABP 5.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Khan, F.I. et al. Large scale analysis of the mutational landscape in β-glucuronidase: a major player of mucopolysaccharidosis type VII. Gene 576, 36–44 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Sly, W.S., Quinton, B.A., McAlister, W.H. & Rimoin, D.L. Beta glucuronidase deficiency: report of clinical, radiologic, and biochemical features of a new mucopolysaccharidosis. J. Pediatr. 82, 249–257 (1973).

    Article  CAS  PubMed  Google Scholar 

  3. Naz, H. et al. Human β-glucuronidase: structure, function, and application in enzyme replacement therapy. Rejuvenation Res. 16, 352–363 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Rivara, S., Milazzo, F.M. & Giannini, G. Heparanase: a rainbow pharmacological target associated to multiple pathologies including rare diseases. Future Med. Chem. 8, 647–680 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Vlodavsky, I. et al. Significance of heparanase in cancer and inflammation. Cancer Microenviron. 5, 115–132 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Cantarel, B.L. et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37, D233–D238 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Jain, S. et al. Structure of human beta-glucuronidase reveals candidate lysosomal targeting and active-site motifs. Nat. Struct. Biol. 3, 375–381 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Wu, L., Viola, C.M., Brzozowski, A.M. & Davies, G.J. Structural characterization of human heparanase reveals insights into substrate recognition. Nat. Struct. Mol. Biol. 22, 1016–1022 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jiang, J. et al. Detection of active mammalian GH31 α-glucosidases in health and disease using in-class, broad-spectrum activity-based probes. ACS Cent. Sci. 2, 351–358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kallemeijn, W.W. et al. Novel activity-based probes for broad-spectrum profiling of retaining β-exoglucosidases in situ and in vivo. Angew. Chem. Int. Ed. Engl. 51, 12529–12533 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Willems, L.I. et al. Potent and selective activity-based probes for GH27 human retaining α-galactosidases. J. Am. Chem. Soc. 136, 11622–11625 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Witte, M.D. et al. Ultrasensitive in situ visualization of active glucocerebrosidase molecules. Nat. Chem. Biol. 6, 907–913 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Jiang, J. et al. In vitro and in vivo comparative and competitive activity-based protein profiling of GH29 α-L-fucosidases. Chem. Sci. 6, 2782–2789 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kwan, D.H. et al. Chemoenzymatic synthesis of 6-phospho-cyclophellitol as a novel probe of 6-phospho-β-glucosidases. FEBS Lett. 590, 461–468 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Barglow, K.T. & Cravatt, B.F. Activity-based protein profiling for the functional annotation of enzymes. Nat. Methods 4, 822–827 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Li, K.Y. et al. Exploring functional cyclophellitol analogues as human retaining beta-glucosidase inhibitors. Org. Biomol. Chem. 12, 7786–7791 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Koshland, D.E. Stereochemistry and the mechanism of enzymatic reactions. Biol. Rev. Camb. Philos. Soc. 28, 416–436 (1953).

    Article  CAS  Google Scholar 

  18. Willems, L.I. et al. From covalent glycosidase inhibitors to activity-based glycosidase probes. Chemistry 20, 10864–10872 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Michikawa, M. et al. Structural and biochemical characterization of glycoside hydrolase family 79 β-glucuronidase from Acidobacterium capsulatum. J. Biol. Chem. 287, 14069–14077 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baici, A., Schenker, P., Wächter, M. & Rüedi, P. 3-Fluoro-2,4-dioxa-3-phosphadecalins as inhibitors of acetylcholinesterase. A reappraisal of kinetic mechanisms and diagnostic methods. Chem. Biodivers. 6, 261–282 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Speciale, G., Thompson, A.J., Davies, G.J. & Williams, S.J. Dissecting conformational contributions to glycosidase catalysis and inhibition. Curr. Opin. Struct. Biol. 28, 1–13 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gloster, T.M. & Davies, G.J. Glycosidase inhibition: assessing mimicry of the transition state. Org. Biomol. Chem. 8, 305–320 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Islam, M.R., Grubb, J.H. & Sly, W.S. C-terminal processing of human beta-glucuronidase. The propeptide is required for full expression of catalytic activity, intracellular retention, and proper phosphorylation. J. Biol. Chem. 268, 22627–22633 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Ono, M. et al. Phosphorylation of beta-glucuronidases from human normal liver and hepatoma by cAMP-dependent protein kinase. J. Biol. Chem. 263, 5884–5889 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Forrest, A.R. et al. A promoter-level mammalian expression atlas. Nature 507, 462–470 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Weiss, D.J., Liggitt, D. & Clark, J.G. Histochemical discrimination of endogenous mammalian beta-galactosidase activity from that resulting from lac-Z gene expression. Histochem. J. 31, 231–236 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Peterson, S.B. & Liu, J. Multi-faceted substrate specificity of heparanase. Matrix Biol. 32, 223–227 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Fairbanks, M.B. et al. Processing of the human heparanase precursor and evidence that the active enzyme is a heterodimer. J. Biol. Chem. 274, 29587–29590 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Abboud-Jarrous, G. et al. Cathepsin L is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. J. Biol. Chem. 283, 18167–18176 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Takahashi, K. et al. Characterization of CAA0225, a novel inhibitor specific for cathepsin L, as a probe for autophagic proteolysis. Biol. Pharm. Bull. 32, 475–479 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Shaw, E., Mohanty, S., Colic, A., Stoka, V. & Turk, V. The affinity-labelling of cathepsin S with peptidyl diazomethyl ketones. Comparison with the inhibition of cathepsin L and calpain. FEBS Lett. 334, 340–342 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Nadav, L. et al. Activation, processing and trafficking of extracellular heparanase by primary human fibroblasts. J. Cell Sci. 115, 2179–2187 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Vlodavsky, I. et al. Expression of heparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Invasion Metastasis 12, 112–127 (1992).

    CAS  PubMed  Google Scholar 

  34. McKenzie, E. et al. Biochemical characterization of the active heterodimer form of human heparanase (Hpa1) protein expressed in insect cells. Biochem. J. 373, 423–435 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Islam, M.R. et al. Active site residues of human beta-glucuronidase. Evidence for Glu(540) as the nucleophile and Glu(451) as the acid-base residue. J. Biol. Chem. 274, 23451–23455 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Kallemeijn, W.W. et al. A sensitive gel-based method combining distinct cyclophellitol-based probes for the identification of acid/base residues in human retaining β-glucosidases. J. Biol. Chem. 289, 35351–35362 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Niphakis, M.J. & Cravatt, B.F. Enzyme inhibitor discovery by activity-based protein profiling. Annu. Rev. Biochem. 83, 341–377 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Kawase, Y. et al. A-72363 A-1, A-2, and C, novel heparanase inhibitors from Streptomyces nobilis SANK 60192, II. Biological activities. J. Antibiot. (Tokyo) 49, 61–64 (1996).

    Article  CAS  Google Scholar 

  39. Rabenstein, D.L. Heparin and heparan sulfate: structure and function. Nat. Prod. Rep. 19, 312–331 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Davies, G.J., Wilson, K.S. & Henrissat, B. Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem. J. 321, 557–559 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bohlmann, L. et al. Functional and structural characterization of a heparanase. Nat. Chem. Biol. 11, 955–957 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Abboud-Jarrous, G. et al. Site-directed mutagenesis, proteolytic cleavage, and activation of human proheparanase. J. Biol. Chem. 280, 13568–13575 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Gingis-Velitski, S. et al. Heparanase uptake is mediated by cell membrane heparan sulfate proteoglycans. J. Biol. Chem. 279, 44084–44092 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Moreland, R.J. et al. Lysosomal acid alpha-glucosidase consists of four different peptides processed from a single chain precursor. J. Biol. Chem. 280, 6780–6791 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Tollersrud, O.K. et al. Purification of bovine lysosomal alpha-mannosidase, characterization of its gene and determination of two mutations that cause alpha-mannosidosis. Eur. J. Biochem. 246, 410–419 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Li, K.-Y. Synthesis of cyclophellitol, dyclophellitol aziridine, and their tagged derivatives. European J. Org. Chem. 6030–6043 (2014).

    Article  CAS  Google Scholar 

  47. Zheng, L., Baumann, U. & Reymond, J.L. An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res. 32, e115 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Li, M.Z. & Elledge, S.J. SLIC: a method for sequence- and ligation-independent cloning. Methods Mol. Biol. 852, 51–59 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Berger, I., Fitzgerald, D.J. & Richmond, T.J. Baculovirus expression system for heterologous multiprotein complexes. Nat. Biotechnol. 22, 1583–1587 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Seiler, C.Y. et al. DNASU plasmid and PSI:Biology-Materials repositories: resources to accelerate biological research. Nucleic Acids Res. 42, D1253–D1260 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Li, N. et al. Relative quantification of proteasome activity by activity-based protein profiling and LC-MS/MS. Nat. Protoc. 8, 1155–1168 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. D'Arcy, A., Bergfors, T., Cowan-Jacob, S.W. & Marsh, M. Microseed matrix screening for optimization in protein crystallization: what have we learned? Acta Crystallogr. F Struct. Biol. Commun. 70, 1117–1126 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186–190 (2010).

    Article  CAS  Google Scholar 

  54. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Evans, P.R. & Murshudov, G.N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 69, 1204–1214 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66, 22–25 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Murshudov, G.N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lebedev, A.A. et al. JLigand: a graphical tool for the CCP4 template-restraint library. Acta Crystallogr. D Biol. Crystallogr. 68, 431–440 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. McNicholas, S., Potterton, E., Wilson, K.S. & Noble, M.E.M. Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr. D Biol. Crystallogr. 67, 386–394 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Diamond Light Source for access to beamlines i02, i03 and i04 (proposals mx-9948 and mx-13587), which contributed to the results presented here. We acknowledge the Netherlands Organization for Scientific Research (NWO, ChemThem Grant to J.M.F.G.A. and H.S.O.), the China Scholarship Council (CSC, PhD Grant to J.J.), the European Research Council (ErC-2011-AdG-290836 to H.S.O.; ErC-2012-AdG-322942 to G.J.D.), and the Royal Society (Ken Murray Research Professorship to G.J.D.) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

L.W., J.M.F.G.A., H.S.O. and G.J.D. conceived and designed the experiments. J.J., M.A., W.D. and C.v.E. carried out synthesis of probes, with guidance from G.A.v.d.M. and J.D.C.C. L.W. and Y.J. carried out protein expression and structural studies on enzyme-probe complexes. J.J., L.W., W.W.K. and C.-L.K. carried out gel labeling experiments. J.J. and B.I.F. carried out proteomics experiments. C.-L.K. and W.W.K. determined IC50 and kinetic parameters for ABP inhibition. M.v.E. obtained tissue samples. L.W., J.J., H.S.O., and G.J.D. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Herman S Overkleeft or Gideon J Davies.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–2, Supplementary Figures 1–12 and Supplementary Note 1 (PDF 4578 kb)

Supplementary Note 2

Synthesis and compound characterization details (PDF 6444 kb)

Supplementary Dataset 1

Full mass spectrometry datasets for proteomics experiments. (XLSX 2614 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Jiang, J., Jin, Y. et al. Activity-based probes for functional interrogation of retaining β-glucuronidases. Nat Chem Biol 13, 867–873 (2017). https://doi.org/10.1038/nchembio.2395

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2395

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing