Abstract
Peptide backbone N-methylation, as seen in cyclosporin A, has been considered to be exclusive to nonribosomal peptides. We have identified the first post-translationally modified peptide or protein harboring internal α-N-methylations through discovery of the genetic locus for the omphalotins, cyclic N-methylated peptides produced by the fungus Omphalotus olearius. We show that iterative autocatalytic activity of an N-methyltransferase fused to its peptide substrate is the signature of a new family of ribosomally encoded metabolites.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Exploring fungal RiPPs from the perspective of chemical ecology
Fungal Biology and Biotechnology Open Access 25 June 2022
-
Biosynthetic potential of the global ocean microbiome
Nature Open Access 22 June 2022
-
Conformational rearrangements enable iterative backbone N-methylation in RiPP biosynthesis
Nature Communications Open Access 09 September 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout


Change history
14 June 2017
In the version of this article initially published online, the side chain of tryptophan was drawn incorrectly in the structure of omphalotin A depicted in Figure 1a and the graphical abstract. The error has been corrected in the print, PDF and HTML versions of this article.
References
Walsh, C.T., Garneau-Tsodikova, S. & Gatto, G.J. Jr. Angew. Chem. Int. Edn. Engl. 44, 7342–7372 (2005).
Arnison, P.G. et al. Nat. Prod. Rep. 30, 108–160 (2013).
Walsh, C.T., O'Brien, R.V. & Khosla, C. Angew. Chem. Int. Edn. Engl. 52, 7098–7124 (2013).
Freeman, M.F. et al. Science 338, 387–390 (2012).
Chatterjee, J., Rechenmacher, F. & Kessler, H. Angew. Chem. Int. Edn. Engl. 52, 254–269 (2013).
Sterner, O., Etzel, W., Mayer, A. & Anke, H. Nat. Prod. Lett. 10, 33–38 (1997).
Li, K., Condurso, H.L., Li, G., Ding, Y. & Bruner, S.D. Nat. Chem. Biol. 12, 973–979 (2016).
Garg, N., Salazar-Ocampo, L.M.A. & van der Donk, W.A. Proc. Natl. Acad. Sci. USA 110, 7258–7263 (2013).
Gomez-Escribano, J.P., Song, L., Bibb, M.J. & Challis, G.L. Chem. Sci. 3, 3522–3522 (2012).
Ghodge, S.V., Biernat, K.A., Bassett, S.J., Redinbo, M.R. & Bowers, A.A. J. Am. Chem. Soc. 138, 5487–5490 (2016).
Koehnke, J. et al. Nat. Struct. Mol. Biol. 19, 767–772 (2012).
Luo, H. et al. Chem. Biol. 21, 1610–1617 (2014).
Craik, D.J., Daly, N.L., Bond, T. & Waine, C. J. Mol. Biol. 294, 1327–1336 (1999).
Faulds, D., Goa, K.L. & Benfield, P. Drugs 45, 953–1040 (1993).
Komatsu, K., Shigemori, H. & Kobayashi, J. J. Org. Chem. 66, 6189–6192 (2001).
Pattabiraman, V.R. & Bode, J.W. Nature 480, 471–479 (2011).
Maini, R., Umemoto, S. & Suga, H. Curr. Opin. Chem. Biol. 34, 44–52 (2016).
Liermann, J.C. et al. Eur. J. Org. Chem. 2009, 1256–1262 (2009).
Ravikiran, B. & Mahalakshmi, R. RSC Adv. 4, 33958–33974 (2014).
Petrovan, R.J. et al. Biochemistry 37, 1185–1191 (1998).
Duda, R.L. Cell 94, 55–60 (1998).
Hallen, H.E., Luo, H., Scott-Craig, J.S. & Walton, J.D. Proc. Natl. Acad. Sci. USA 104, 19097–19101 (2007).
Ding, W. et al. Proc. Natl. Acad. Sci. USA 113, 3521–3526 (2016).
Koiso, Y., Natori, M. & Iwasaki, S. Tetrahedron Lett. 33, 4157–4160 (1992).
Johnson, R.D. et al. Fungal Genet. Biol. 85, 14–24 (2015).
Oman, T.J., Knerr, P.J., Bindman, N.A., Velásquez, J.E. & van der Donk, W.A. J. Am. Chem. Soc. 134, 6952–6955 (2012).
Koehnke, J. et al. Nat. Chem. Biol. 11, 558–563 (2015).
Acknowledgements
We thank M. Aebi for helpful discussions and continuous support, J. Thorner for helpful suggestions regarding the manuscript, the functional genomics center Zürich for ESI–TOF–MS measurements, A. Brachmann for help with HPLC–MS/MS HCD measurements, A. Imani for performing cell-free experiments and C.W. Lin for help with HPLC–MS/MS ETD measurements. We are grateful to L. Nagy and F. Martin for sharing unpublished genome and transcriptome data of Dendrothele bispora CBS 962.96 and Marasmius fiardii PR-910, respectively, produced and made publicly available by the US Department of Energy Joint Genome Institute (DOE JGI). This work was supported by ETH Zürich (M.K. and J.P.), the University of Minnesota (M.F.F.), the Swiss National Science Foundation (31003A_146992) (J.P.), and the EU 7th framework program (SYNPEPTIDE) (J.P.).
Author information
Authors and Affiliations
Contributions
M.K. initiated and supervised the project. M.F.F. and N.S.v.d.V. designed the experiments. N.S.v.d.V. and N.K. conducted the experiments. N.S.v.d.V., M.F.F. and M.J.H. analyzed the data. All authors discussed the results. M.F.F., N.S.v.d.V. and M.K. wrote the manuscript. J.P. edited the manuscript and provided experimental expertise.
Corresponding authors
Ethics declarations
Competing interests
M.K., M.F.F., N.S.v.d.V., N.K. and J.P. are inventors on European Patent application no. EP16164245.9 (PCT/EP2017/058327) filed by ETH Zürich titled “Novel multiply Backbone N-methyl transferase and use thereof.”
Supplementary information
Supplementary Text and Figures
Supplementary Results, Supplementary Tables 1–2 and Supplementary Figures 1–6 (PDF 6681 kb)
Supplementary Note
Mass spectra supporting the structural assignment of peptides described in this study. (PDF 15750 kb)
Rights and permissions
About this article
Cite this article
van der Velden, N., Kälin, N., Helf, M. et al. Autocatalytic backbone N-methylation in a family of ribosomal peptide natural products. Nat Chem Biol 13, 833–835 (2017). https://doi.org/10.1038/nchembio.2393
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchembio.2393
This article is cited by
-
Recent advances in the biosynthesis of ribosomally synthesized and posttranslationally modified peptides of fungal origin
The Journal of Antibiotics (2023)
-
Exploring fungal RiPPs from the perspective of chemical ecology
Fungal Biology and Biotechnology (2022)
-
RiPP-ing through the plant kingdom
Nature Chemical Biology (2022)
-
Discovery and biosynthesis of cyclic plant peptides via autocatalytic cyclases
Nature Chemical Biology (2022)
-
Biosynthetic potential of the global ocean microbiome
Nature (2022)