Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Autocatalytic backbone N-methylation in a family of ribosomal peptide natural products

This article has been updated

Abstract

Peptide backbone N-methylation, as seen in cyclosporin A, has been considered to be exclusive to nonribosomal peptides. We have identified the first post-translationally modified peptide or protein harboring internal α-N-methylations through discovery of the genetic locus for the omphalotins, cyclic N-methylated peptides produced by the fungus Omphalotus olearius. We show that iterative autocatalytic activity of an N-methyltransferase fused to its peptide substrate is the signature of a new family of ribosomally encoded metabolites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Omphalotin A: natural product and encoding genetic locus.
Figure 2: Observed methylation states of wild-type and hybrid omphalotin precursors.

Similar content being viewed by others

Change history

  • 14 June 2017

    In the version of this article initially published online, the side chain of tryptophan was drawn incorrectly in the structure of omphalotin A depicted in Figure 1a and the graphical abstract. The error has been corrected in the print, PDF and HTML versions of this article.

References

  1. Walsh, C.T., Garneau-Tsodikova, S. & Gatto, G.J. Jr. Angew. Chem. Int. Edn. Engl. 44, 7342–7372 (2005).

    Article  CAS  Google Scholar 

  2. Arnison, P.G. et al. Nat. Prod. Rep. 30, 108–160 (2013).

    Article  CAS  Google Scholar 

  3. Walsh, C.T., O'Brien, R.V. & Khosla, C. Angew. Chem. Int. Edn. Engl. 52, 7098–7124 (2013).

    Article  CAS  Google Scholar 

  4. Freeman, M.F. et al. Science 338, 387–390 (2012).

    Article  CAS  Google Scholar 

  5. Chatterjee, J., Rechenmacher, F. & Kessler, H. Angew. Chem. Int. Edn. Engl. 52, 254–269 (2013).

    Article  CAS  Google Scholar 

  6. Sterner, O., Etzel, W., Mayer, A. & Anke, H. Nat. Prod. Lett. 10, 33–38 (1997).

    Article  CAS  Google Scholar 

  7. Li, K., Condurso, H.L., Li, G., Ding, Y. & Bruner, S.D. Nat. Chem. Biol. 12, 973–979 (2016).

    Article  Google Scholar 

  8. Garg, N., Salazar-Ocampo, L.M.A. & van der Donk, W.A. Proc. Natl. Acad. Sci. USA 110, 7258–7263 (2013).

    Article  CAS  Google Scholar 

  9. Gomez-Escribano, J.P., Song, L., Bibb, M.J. & Challis, G.L. Chem. Sci. 3, 3522–3522 (2012).

    Article  CAS  Google Scholar 

  10. Ghodge, S.V., Biernat, K.A., Bassett, S.J., Redinbo, M.R. & Bowers, A.A. J. Am. Chem. Soc. 138, 5487–5490 (2016).

    Article  CAS  Google Scholar 

  11. Koehnke, J. et al. Nat. Struct. Mol. Biol. 19, 767–772 (2012).

    Article  CAS  Google Scholar 

  12. Luo, H. et al. Chem. Biol. 21, 1610–1617 (2014).

    Article  CAS  Google Scholar 

  13. Craik, D.J., Daly, N.L., Bond, T. & Waine, C. J. Mol. Biol. 294, 1327–1336 (1999).

    Article  CAS  Google Scholar 

  14. Faulds, D., Goa, K.L. & Benfield, P. Drugs 45, 953–1040 (1993).

    Article  CAS  Google Scholar 

  15. Komatsu, K., Shigemori, H. & Kobayashi, J. J. Org. Chem. 66, 6189–6192 (2001).

    Article  CAS  Google Scholar 

  16. Pattabiraman, V.R. & Bode, J.W. Nature 480, 471–479 (2011).

    Article  CAS  Google Scholar 

  17. Maini, R., Umemoto, S. & Suga, H. Curr. Opin. Chem. Biol. 34, 44–52 (2016).

    Article  CAS  Google Scholar 

  18. Liermann, J.C. et al. Eur. J. Org. Chem. 2009, 1256–1262 (2009).

    Article  Google Scholar 

  19. Ravikiran, B. & Mahalakshmi, R. RSC Adv. 4, 33958–33974 (2014).

    Article  CAS  Google Scholar 

  20. Petrovan, R.J. et al. Biochemistry 37, 1185–1191 (1998).

    Article  CAS  Google Scholar 

  21. Duda, R.L. Cell 94, 55–60 (1998).

    Article  CAS  Google Scholar 

  22. Hallen, H.E., Luo, H., Scott-Craig, J.S. & Walton, J.D. Proc. Natl. Acad. Sci. USA 104, 19097–19101 (2007).

    Article  CAS  Google Scholar 

  23. Ding, W. et al. Proc. Natl. Acad. Sci. USA 113, 3521–3526 (2016).

    Article  CAS  Google Scholar 

  24. Koiso, Y., Natori, M. & Iwasaki, S. Tetrahedron Lett. 33, 4157–4160 (1992).

    Article  CAS  Google Scholar 

  25. Johnson, R.D. et al. Fungal Genet. Biol. 85, 14–24 (2015).

    Article  CAS  Google Scholar 

  26. Oman, T.J., Knerr, P.J., Bindman, N.A., Velásquez, J.E. & van der Donk, W.A. J. Am. Chem. Soc. 134, 6952–6955 (2012).

    Article  CAS  Google Scholar 

  27. Koehnke, J. et al. Nat. Chem. Biol. 11, 558–563 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Aebi for helpful discussions and continuous support, J. Thorner for helpful suggestions regarding the manuscript, the functional genomics center Zürich for ESI–TOF–MS measurements, A. Brachmann for help with HPLC–MS/MS HCD measurements, A. Imani for performing cell-free experiments and C.W. Lin for help with HPLC–MS/MS ETD measurements. We are grateful to L. Nagy and F. Martin for sharing unpublished genome and transcriptome data of Dendrothele bispora CBS 962.96 and Marasmius fiardii PR-910, respectively, produced and made publicly available by the US Department of Energy Joint Genome Institute (DOE JGI). This work was supported by ETH Zürich (M.K. and J.P.), the University of Minnesota (M.F.F.), the Swiss National Science Foundation (31003A_146992) (J.P.), and the EU 7th framework program (SYNPEPTIDE) (J.P.).

Author information

Authors and Affiliations

Authors

Contributions

M.K. initiated and supervised the project. M.F.F. and N.S.v.d.V. designed the experiments. N.S.v.d.V. and N.K. conducted the experiments. N.S.v.d.V., M.F.F. and M.J.H. analyzed the data. All authors discussed the results. M.F.F., N.S.v.d.V. and M.K. wrote the manuscript. J.P. edited the manuscript and provided experimental expertise.

Corresponding authors

Correspondence to Michael F Freeman or Markus Künzler.

Ethics declarations

Competing interests

M.K., M.F.F., N.S.v.d.V., N.K. and J.P. are inventors on European Patent application no. EP16164245.9 (PCT/EP2017/058327) filed by ETH Zürich titled “Novel multiply Backbone N-methyl transferase and use thereof.”

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–2 and Supplementary Figures 1–6 (PDF 6681 kb)

Supplementary Note

Mass spectra supporting the structural assignment of peptides described in this study. (PDF 15750 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Velden, N., Kälin, N., Helf, M. et al. Autocatalytic backbone N-methylation in a family of ribosomal peptide natural products. Nat Chem Biol 13, 833–835 (2017). https://doi.org/10.1038/nchembio.2393

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2393

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing