Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Functional selectivity of GPCR-directed drug action through location bias

This article has been updated


G-protein-coupled receptors (GPCRs) are increasingly recognized to operate from intracellular membranes as well as the plasma membrane. The β2-adrenergic GPCR can activate Gs-linked cyclic AMP (Gs-cAMP) signaling from endosomes. We show here that the homologous human β1-adrenergic receptor initiates an internal Gs-cAMP signal from the Golgi apparatus. By developing a chemical method to acutely squelch G-protein coupling at defined membrane locations, we demonstrate that Golgi activation contributes significantly to the overall cellular cAMP response. Golgi signaling utilizes a preexisting receptor pool rather than receptors delivered from the cell surface, requiring separate access of extracellular ligands. Epinephrine, a hydrophilic endogenous ligand, accesses the Golgi-localized receptor pool by facilitated transport requiring the organic cation transporter 3 (OCT3), whereas drugs can access the Golgi pool by passive diffusion according to hydrophobicity. We demonstrate marked differences, among both agonist and antagonist drugs, in Golgi-localized receptor access and show that β-blocker drugs currently used in the clinic differ markedly in ability to antagonize the Golgi signal. We propose 'location bias' as a new principle for achieving functional selectivity of GPCR-directed drug action.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Golgi-localized β1AR achieves an activated conformation upon extracellular ligand application.
Figure 2: Golgi-localized β1AR activates Gs-mediated cAMP response.
Figure 3: Rapamycin-inducible recruitment of Nb80 blocks β1AR–Gs coupling and inhibits Gs-mediated cAMP response at both the plasma membrane and the Golgi.
Figure 4: Epinephrine accesses the Golgi-localized β1AR pool via corticosterone-sensitive membrane transport.
Figure 5: Pharmacological manipulations differentially regulate β1AR compartmentalized signaling.
Figure 6: Pharmacological manipulations differentially regulate β1AR-mediated PKA activation on the Golgi.

Change history

  • 29 June 2017

    In the Supplementary Information originally posted online, the captions for Supplementary Videos 3 and 4 misstated the name of one of the markers in the list of videos. In the article HTML, the video captions should read, "Confocal image series of β1AR (cyan), Nb37-GFP (green) and the Golgi marker (red) expressing HeLa cells incubated with 10 μM isoproterenol." In the Supplementary Information PDF file, the video caption should read, "Confocal image series of β1AR (cyan), Nb37-GFP (green) and the Golgi marker (red) expressing HeLa cells incubated with 10 μM isoproterenol. The time between each frame is 3 s (t = 0 corresponds to the time of agonist addition)." The error has been corrected in this file and in the HTML as of 29 June 2017.


  1. Galandrin, S., Oligny-Longpré, G. & Bouvier, M. The evasive nature of drug efficacy: implications for drug discovery. Trends Pharmacol. Sci. 28, 423–430 (2007).

    CAS  PubMed  Google Scholar 

  2. Maudsley, S., Martin, B. & Luttrell, L.M. The origins of diversity and specificity in G protein-coupled receptor signaling. J. Pharmacol. Exp. Ther. 314, 485–494 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Irannejad, R. et al. Conformational biosensors reveal GPCR signalling from endosomes. Nature 495, 534–538 (2013).

    CAS  PubMed  Google Scholar 

  4. Tsvetanova, N.G. & von Zastrow, M. Spatial encoding of cyclic AMP signaling specificity by GPCR endocytosis. Nat. Chem. Biol. 10, 1061–1065 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mullershausen, F. et al. Persistent signaling induced by FTY720-phosphate is mediated by internalized S1P1 receptors. Nat. Chem. Biol. 5, 428–434 (2009).

    CAS  PubMed  Google Scholar 

  6. Calebiro, D. et al. Persistent cAMP-signals triggered by internalized G-protein-coupled receptors. PLoS Biol. 7, e1000172 (2009).

    PubMed  PubMed Central  Google Scholar 

  7. Ferrandon, S. et al. Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat. Chem. Biol. 5, 734–742 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jong, Y.J., Sergin, I., Purgert, C.A. & O'Malley, K.L. Location-dependent signaling of the group 1 metabotropic glutamate receptor mGlu5. Mol. Pharmacol. 86, 774–785 (2014).

    PubMed  PubMed Central  Google Scholar 

  9. Suzuki, T. et al. Distinct regulation of β1- and β2-adrenergic receptors in Chinese hamster fibroblasts. Mol. Pharmacol. 41, 542–548 (1992).

    CAS  PubMed  Google Scholar 

  10. Boivin, B. et al. Functional β-adrenergic receptor signalling on nuclear membranes in adult rat and mouse ventricular cardiomyocytes. Cardiovasc. Res. 71, 69–78 (2006).

    CAS  PubMed  Google Scholar 

  11. Zhang, L. et al. Phospholipase Cɛ hydrolyzes perinuclear phosphatidylinositol 4-phosphate to regulate cardiac hypertrophy. Cell 153, 216–227 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Malik, S. et al. G protein βγ subunits regulate cardiomyocyte hypertrophy through a perinuclear Golgi phosphatidylinositol 4-phosphate hydrolysis pathway. Mol. Biol. Cell 26, 1188–1198 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu, W.Z. et al. Heterodimerization of β1- and β2-adrenergic receptor subtypes optimizes beta-adrenergic modulation of cardiac contractility. Circ. Res. 97, 244–251 (2005).

    CAS  PubMed  Google Scholar 

  14. Rasmussen, S.G. et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469, 175–180 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Steyaert, J. & Kobilka, B.K. Nanobody stabilization of G protein–coupled receptor conformational states. Curr. Opin. Struct. Biol. 21, 567–572 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ziemek, R. et al. Fluorescence- and luminescence-based methods for the determination of affinity and activity of neuropeptide Y2 receptor ligands. Eur. J. Pharmacol. 551, 10–18 (2006).

    CAS  PubMed  Google Scholar 

  17. Brand, F., Klutz, A.M., Jacobson, K.A., Fredholm, B.B. & Schulte, G. Adenosine A(2A) receptor dynamics studied with the novel fluorescent agonist Alexa 488-APEC. Eur. J. Pharmacol. 590, 36–42 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Stoddart, L.A., Kilpatrick, L.E., Briddon, S.J. & Hill, S.J. Probing the pharmacology of G protein-coupled receptors with fluorescent ligands. Neuropharmacology 98, 48–57 (2015).

    CAS  PubMed  Google Scholar 

  19. Shiina, T., Kawasaki, A., Nagao, T. & Kurose, H. Interaction with beta-arrestin determines the difference in internalization behavor between β1- and β2-adrenergic receptors. J. Biol. Chem. 275, 29082–29090 (2000).

    CAS  PubMed  Google Scholar 

  20. Boucrot, E. et al. Endophilin marks and controls a clathrin-independent endocytic pathway. Nature 517, 460–465 (2015).

    CAS  PubMed  Google Scholar 

  21. Denker, S.P., McCaffery, J.M., Palade, G.E., Insel, P.A. & Farquhar, M.G. Differential distribution of α subunits and βγ subunits of heterotrimeric G proteins on Golgi membranes of the exocrine pancreas. J. Cell Biol. 133, 1027–1040 (1996).

    CAS  PubMed  Google Scholar 

  22. Cheng, H. & Farquhar, M.G. Presence of adenylate cyclase activity in Golgi and other fractions from rat liver. II. Cytochemical localization within Golgi and ER membranes. J. Cell Biol. 70, 671–684 (1976).

    CAS  PubMed  Google Scholar 

  23. Michaelson, D., Ahearn, I., Bergo, M., Young, S. & Philips, M. Membrane trafficking of heterotrimeric G proteins via the endoplasmic reticulum and Golgi. Mol. Biol. Cell 13, 3294–3302 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Maier, O., Ehmsen, E. & Westermann, P. Trimeric G protein α subunits of the Gs and Gi families localized at the Golgi membrane. Biochem. Biophys. Res. Commun. 208, 135–143 (1995).

    CAS  PubMed  Google Scholar 

  25. Cancino, J. et al. Control systems of membrane transport at the interface between the endoplasmic reticulum and the Golgi. Dev. Cell 30, 280–294 (2014).

    CAS  PubMed  Google Scholar 

  26. Westfield, G.H. et al. Structural flexibility of the Gαs α-helical domain in the β2-adrenoceptor Gs complex. Proc. Natl. Acad. Sci. USA 108, 16086–16091 (2011).

    CAS  PubMed  Google Scholar 

  27. Branco, A.F. et al. Isoproterenol cytotoxicity is dependent on the differentiation state of the cardiomyoblast H9c2 cell line. Cardiovasc. Toxicol. 11, 191–203 (2011).

    CAS  PubMed  Google Scholar 

  28. Staus, D.P. et al. Regulation of β2-adrenergic receptor function by conformationally selective single-domain intrabodies. Mol. Pharmacol. 85, 472–481 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. Crabtree, G.R. & Schreiber, S.L. Three-part inventions: intracellular signaling and induced proximity. Trends Biochem. Sci. 21, 418–422 (1996).

    CAS  PubMed  Google Scholar 

  30. Inoue, T., Heo, W.D., Grimley, J.S., Wandless, T.J. & Meyer, T. An inducible translocation strategy to rapidly activate and inhibit small GTPase signaling pathways. Nat. Methods 2, 415–418 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Staehelin, M., Simons, P., Jaeggi, K. & Wigger, N. CGP-12177. A hydrophilic β-adrenergic receptor radioligand reveals high affinity binding of agonists to intact cells. J. Biol. Chem. 258, 3496–3502 (1983).

    CAS  PubMed  Google Scholar 

  32. Wright, C.D. et al. Nuclear α1-adrenergic receptors signal activated ERK localization to caveolae in adult cardiac myocytes. Circ. Res. 103, 992–1000 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. O'Connell, T.D., Jensen, B.C., Baker, A.J. & Simpson, P.C. Cardiac α1-adrenergic receptors: novel aspects of expression, signaling mechanisms, physiologic function, and clinical importance. Pharmacol. Rev. 66, 308–333 (2013).

    PubMed  Google Scholar 

  34. Gründemann, D. et al. Activation of the extraneuronal monoamine transporter (EMT) from rat expressed in 293 cells. Br. J. Pharmacol. 137, 910–918 (2002).

    PubMed  PubMed Central  Google Scholar 

  35. Arai, R. et al. Differential subcellular location of mitochondria in rat serotonergic neurons depends on the presence and the absence of monoamine oxidase type B. Neuroscience 114, 825–835 (2002).

    CAS  PubMed  Google Scholar 

  36. Yang, Y. et al. Biopharmaceutics classification of selected β-blockers: solubility and permeability class membership. Mol. Pharm. 4, 608–614 (2007).

    CAS  PubMed  Google Scholar 

  37. Neil-Dwyer, G., Bartlett, J., McAinsh, J. & Cruickshank, J.M. β-adrenoceptor blockers and the blood-brian barrier. Br. J. Clin. Pharmacol. 11, 549–553 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wong, W. & Scott, J.D. AKAP signalling complexes: focal points in space and time. Nat. Rev. Mol. Cell Biol. 5, 959–970 (2004).

    CAS  PubMed  Google Scholar 

  39. Nigg, E.A., Schäfer, G., Hilz, H. & Eppenberger, H.M. Cyclic-AMP-dependent protein kinase type II is associated with the Golgi complex and with centrosomes. Cell 41, 1039–1051 (1985).

    CAS  PubMed  Google Scholar 

  40. Nigg, E.A., Hilz, H., Eppenberger, H.M. & Dutly, F. Rapid and reversible translocation of the catalytic subunit of cAMP-dependent protein kinase type II from the Golgi complex to the nucleus. EMBO J. 4, 2801–2806 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Martin, B.R., Deerinck, T.J., Ellisman, M.H., Taylor, S.S. & Tsien, R.Y. Isoform-specific PKA dynamics revealed by dye-triggered aggregation and DAKAP1α-mediated localization in living cells. Chem. Biol. 14, 1031–1042 (2007).

    CAS  PubMed  Google Scholar 

  42. Mavillard, F., Hidalgo, J., Megias, D., Levitsky, K.L. & Velasco, A. PKA-mediated Golgi remodeling during cAMP signal transmission. Traffic 11, 90–109 (2010).

    CAS  PubMed  Google Scholar 

  43. Roth, M., Obaidat, A. & Hagenbuch, B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br. J. Pharmacol. 165, 1260–1287 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Holubarsch, C. et al. Positive and negative inotropic effects of DL-sotalol and D-sotalol in failing and nonfailing human myocardium under physiological experimental conditions. Circulation 92, 2904–2910 (1995).

    CAS  PubMed  Google Scholar 

  45. Seipel, L. & Hoffmeister, H.M. Inotropic and haemodynamic effects of D- and D,L-sotalol: comparison with other antiarrhythmics. Eur Heart J 14 (Suppl. H), 36–40 (1993).

    CAS  PubMed  Google Scholar 

  46. Rosciglione, S., Thériault, C., Boily, M.O., Paquette, M. & Lavoie, C. Gαs regulates the post-endocytic sorting of G protein-coupled receptors. Nat. Commun. 5, 4556 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Irannejad, R. & Wedegaertner, P.B. Regulation of constitutive cargo transport from the trans-Golgi network to plasma membrane by Golgi-localized G protein betagamma subunits. J. Biol. Chem. 285, 32393–32404 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Devic, E., Xiang, Y., Gould, D. & Kobilka, B. β-adrenergic receptor subtype-specific signaling in cardiac myocytes from β1 and β2 adrenoceptor knockout mice. Mol. Pharmacol. 60, 577–583 (2001).

    CAS  PubMed  Google Scholar 

  49. Brodde, O.E. β1- and β2-adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure. Pharmacol. Rev. 43, 203–242 (1991).

    CAS  PubMed  Google Scholar 

  50. Nikolaev, V.O. et al. β2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327, 1653–1657 (2010).

    CAS  PubMed  Google Scholar 

  51. Lobert, V.H. & Stenmark, H. The ESCRT machinery mediates polarization of fibroblasts through regulation of myosin light chain. J. Cell Sci. 125, 29–36 (2012).

    CAS  PubMed  Google Scholar 

Download references


We thank B. Kobilka, J. Steyaert, H. Bourne, N.G. Tsvetanova, G. Peng, B. Lobingier, D. Larsen and K. Thorn for assistance, advice and valuable discussion. These studies were supported by the National Institute on Drug Abuse (DA012864 and DA010711 to M.v.Z.), the National Heart, Lung and Blood Institute (HL122508 to R.I.), the National Institute of Biomedical Imaging and Bioengineering (EB022798 to B.H.), the National Institute of General Medicine (GM056444 to P.B.W.) and the National Heart, Lung and Blood Institute (HL0927088 to M.C.) of the US National Institutes of Health, and the American Heart Association (15PRE21770003 to V.P.).

Author information

Authors and Affiliations



R.I. designed experimental strategy, carried out all of the experiments and analysis and took a lead role in writing the manuscript. V.P. contributed to the PKA experiments and analysis. D.M. contributed to the cAMP experimental design and analysis. B.H. provided essential reagents. P.B.W. contributed to the β-blocker experimental design and data interpretation. M.C. contributed to overall experimental strategy and interpretation and provided essential reagents. M.v.Z. and R.I. designed the experimental strategy and contributed to interpreting the results and writing the paper.

Corresponding author

Correspondence to Mark von Zastrow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–6. (PDF 3122 kb)


Confocal image series of β1AR-expressing HeLa cells with Nb80-GFP (green) and the Golgi marker (red), incubated with 10 μM epinephrine. (AVI 31980 kb)


Confocal image series of β1AR-expressing HeLa cells with Nb80-GFP (green) and Golgi marker (red), incubated with 10 μM dobutamine. (AVI 10967 kb)


Confocal image series of β1AR (cyan), Nb37-GFP (green) and the Golgi marker (red) expressing HeLa cells incubated with 10 μM isoproterenol. (AVI 16026 kb)


Confocal image series of β1AR (cyan), Nb37-GFP (green) and the Golgi marker (red) expressing HeLa cells incubated with 10 μM isoproterenol. (AVI 35010 kb)

Reversal of Nb80-GFP plasma membrane and the Golgi recruitment after addition of 10 μM metoprolol. (AVI 10882 kb)

Reversal of Nb80-GFP plasma membrane recruitment after addition of 100 μM sotalol. (AVI 9421 kb)


PKA Cα-YFP translocation from the Golgi membrane to the cytoplasm in β1AR-expressing HeLa cells upon addition of 10 μM dobutamine. (AVI 19913 kb)


Inhibition of PKA Cα-YFP translocation from the Golgi membrane to the cytoplasm in β1AR-expressing HeLa cells pre-treated with 10 μM metoprolol for 15 min and upon addition of 10 μM dobutamine. (AVI 28693 kb)


Delayed PKA Cα-YFP translocation from the Golgi membrane to the cytoplasm in β1AR-expressing HeLa cells pretreated with 5 mM sotalol for 15 min and upon addition of 10 μM dobutamine. (AVI 15820 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irannejad, R., Pessino, V., Mika, D. et al. Functional selectivity of GPCR-directed drug action through location bias. Nat Chem Biol 13, 799–806 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing