Recognition of EGF-like domains by the Notch-modifying O-fucosyltransferase POFUT1


Protein O-fucosyltransferase 1 (POFUT1) fucosylates the epidermal growth factor (EGF)-like domains found in cell-surface and secreted glycoproteins including Notch and its ligands. Although Notch fucosylation is critical for development, and POFUT1 deficiency leads to human disease, how this enzyme binds and catalyzes the fucosylation of its diverse EGF-like domain substrates has not been determined. Reported here is the X-ray crystal structure of mouse POFUT1 in complex with several EGF-like domains, including EGF12 and EGF26 of Notch. Overall shape complementarity, interactions with invariant atoms of the fucosylation motif and flexible segments on POFUT1 all define its EGF-like-domain binding properties. Using large-scale structural and sequence analysis, we also show that POFUT1 binds EGF-like domains of the hEGF type and that the highly correlated presence of POFUT1 and fucosylatable hEGFs has accompanied animal evolution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Overall structure of the POFUT1–EGF-LD complexes.
Figure 2: The conserved EGF-LD interactions with POFUT1.
Figure 3: The EGF-LD O-fucosylation motif and the catalytic site of POFUT1.
Figure 4: POFUT1 interactions with the C1–C2 loop and the C5–C6 subdomain of the EGF-LDs.
Figure 5: The average structural maps (ASMs) of the hEGF, cEGF, lamEGF and intEGF domains.

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank


  1. 1

    Haltiwanger, R.S. Regulation of signal transduction pathways in development by glycosylation. Curr. Opin. Struct. Biol. 12, 593–598 (2002).

    CAS  Article  Google Scholar 

  2. 2

    Stanley, P. & Okajima, T. Roles of glycosylation in Notch signaling. Curr. Top. Dev. Biol. 92, 131–164 (2010).

    CAS  Article  Google Scholar 

  3. 3

    Rana, N.A. & Haltiwanger, R.S. Fringe benefits: functional and structural impacts of O-glycosylation on the extracellular domain of Notch receptors. Curr. Opin. Struct. Biol. 21, 583–589 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4

    Stanley, P. & Guidos, C.J. Regulation of Notch signaling during T- and B-cell development by O-fucose glycans. Immunol. Rev. 230, 201–215 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Haines, N. & Irvine, K.D. Glycosylation regulates Notch signalling. Nat. Rev. Mol. Cell Biol. 4, 786–797 (2003).

    CAS  Article  Google Scholar 

  6. 6

    Okajima, T. & Irvine, K.D. Regulation of notch signaling by o-linked fucose. Cell 111, 893–904 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Moloney, D.J. et al. Fringe is a glycosyltransferase that modifies Notch. Nature 406, 369–375 (2000).

    CAS  Article  Google Scholar 

  8. 8

    Panin, V.M., Papayannopoulos, V., Wilson, R. & Irvine, K.D. Fringe modulates Notch-ligand interactions. Nature 387, 908–912 (1997).

    CAS  Article  Google Scholar 

  9. 9

    Li, Y., Lei, L., Irvine, K.D. & Baker, N.E. Notch activity in neural cells triggered by a mutant allele with altered glycosylation. Development 130, 2829–2840 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Shi, S. & Stanley, P. Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways. Proc. Natl. Acad. Sci. USA 100, 5234–5239 (2003).

    CAS  Article  Google Scholar 

  11. 11

    Tsao, P.N. et al. Notch signaling prevents mucous metaplasia in mouse conducting airways during postnatal development. Development 138, 3533–3543 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Yan, Q. et al. O-fucose modulates Notch-controlled blood lineage commitment. Am. J. Pathol. 176, 2921–2934 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Yao, D. et al. Protein O-fucosyltransferase 1 (Pofut1) regulates lymphoid and myeloid homeostasis through modulation of Notch receptor ligand interactions. Blood 117, 5652–5662 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Li, M. et al. Mutations in POFUT1, encoding protein O-fucosyltransferase 1, cause generalized Dowling-Degos disease. Am. J. Hum. Genet. 92, 895–903 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Bernardo, B.C. et al. Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc. Natl. Acad. Sci. USA 109, 17615–17620 (2012).

    CAS  Article  Google Scholar 

  16. 16

    Yokota, S. et al. Protein O-fucosyltransferase 1: a potential diagnostic marker and therapeutic target for human oral cancer. Int. J. Oncol. 43, 1864–1870 (2013).

    CAS  Article  Google Scholar 

  17. 17

    Milde-Langosch, K. et al. Prognostic relevance of glycosylation-associated genes in breast cancer. Breast Cancer Res. Treat. 145, 295–305 (2014).

    CAS  Article  Google Scholar 

  18. 18

    Wouters, M.A. et al. Evolution of distinct EGF domains with specific functions. Protein Sci. 14, 1091–1103 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Rampal, R., Arboleda-Velasquez, J.F., Nita-Lazar, A., Kosik, K.S. & Haltiwanger, R.S. Highly conserved O-fucose sites have distinct effects on Notch1 function. J. Biol. Chem. 280, 32133–32140 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    Wang, Y. & Spellman, M.W. Purification and characterization of a GDP-fucose:polypeptide fucosyltransferase from Chinese hamster ovary cells. J. Biol. Chem. 273, 8112–8118 (1998).

    CAS  Article  Google Scholar 

  21. 21

    Martinez-Duncker, I., Mollicone, R., Candelier, J.J., Breton, C. & Oriol, R. A new superfamily of protein-O-fucosyltransferases, alpha2-fucosyltransferases, and alpha6-fucosyltransferases: phylogeny and identification of conserved peptide motifs. Glycobiology 13, 1C–5C (2003).

    CAS  Article  Google Scholar 

  22. 22

    Acar, M. et al. Rumi is a CAP10 domain glycosyltransferase that modifies Notch and is required for Notch signaling. Cell 132, 247–258 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Luo, Y., Nita-Lazar, A. & Haltiwanger, R.S. Two distinct pathways for O-fucosylation of epidermal growth factor-like or thrombospondin type 1 repeats. J. Biol. Chem. 281, 9385–9392 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Okajima, T., Xu, A., Lei, L. & Irvine, K.D. Chaperone activity of protein O-fucosyltransferase 1 promotes notch receptor folding. Science 307, 1599–1603 (2005).

    CAS  Article  Google Scholar 

  25. 25

    Luo, Y. & Haltiwanger, R.S. O-fucosylation of notch occurs in the endoplasmic reticulum. J. Biol. Chem. 280, 11289–11294 (2005).

    CAS  Article  Google Scholar 

  26. 26

    Vasudevan, D. & Haltiwanger, R.S. Novel roles for O-linked glycans in protein folding. Glycoconj. J. 31, 417–426 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Lira-Navarrete, E. et al. Structural insights into the mechanism of protein O-fucosylation. PLoS One 6, e25365 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    Coutinho, P.M., Deleury, E., Davies, G.J. & Henrissat, B. An evolving hierarchical family classification for glycosyltransferases. J. Mol. Biol. 328, 307–317 (2003).

    CAS  Article  Google Scholar 

  29. 29

    Lawrence, M.C. & Colman, P.M. Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234, 946–950 (1993).

    CAS  Article  Google Scholar 

  30. 30

    Ysern, X., Li, H. & Mariuzza, R.A. Imperfect interfaces. Nat. Struct. Biol. 5, 412–414 (1998).

    CAS  Article  Google Scholar 

  31. 31

    Lei, L., Xu, A., Panin, V.M. & Irvine, K.D. An O-fucose site in the ligand binding domain inhibits Notch activation. Development 130, 6411–6421 (2003).

    CAS  Article  Google Scholar 

  32. 32

    Valero-González, J. et al. A proactive role of water molecules in acceptor recognition by protein O-fucosyltransferase 2. Nat. Chem. Biol. 12, 240–246 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Lairson, L.L., Henrissat, B., Davies, G.J. & Withers, S.G. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77, 521–555 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34

    Lazarus, M.B., Nam, Y., Jiang, J., Sliz, P. & Walker, S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 469, 564–567 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Abbott, D.W., Macauley, M.S., Vocadlo, D.J. & Boraston, A.B. Streptococcus pneumoniae endohexosaminidase D, structural and mechanistic insight into substrate-assisted catalysis in family 85 glycoside hydrolases. J. Biol. Chem. 284, 11676–11689 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36

    Tvaroška, I. Atomistic insight into the catalytic mechanism of glycosyltransferases by combined quantum mechanics/molecular mechanics (QM/MM) methods. Carbohydr. Res. 403, 38–47 (2015).

    Article  CAS  Google Scholar 

  37. 37

    Rini, J., Esko, J. & Varki, A. Glycosyltransferases and glycan-processing enzymes. in Essentials of Glycobiology (eds. Varki, A. et al.) (Cold Spring Harbor, New York, USA, 2009).

  38. 38

    Matsuura, A. et al. O-linked N-acetylglucosamine is present on the extracellular domain of notch receptors. J. Biol. Chem. 283, 35486–35495 (2008).

    CAS  Article  Google Scholar 

  39. 39

    Cordle, J. et al. A conserved face of the Jagged/Serrate DSL domain is involved in Notch trans-activation and cis-inhibition. Nat. Struct. Mol. Biol. 15, 849–857 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40

    Ringrose, J.H. et al. Deep proteome profiling of Trichoplax adhaerens reveals remarkable features at the origin of metazoan multicellularity. Nat. Commun. 4, 1408 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Chen, C.I. et al. Structure of human POFUT2: insights into thrombospondin type 1 repeat fold and O-fucosylation. EMBO J. 31, 3183–3197 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42

    Sigrist, C.J. et al. New and continuing developments at PROSITE. Nucleic Acids Res. 41, D344–D347 (2013).

    CAS  Article  Google Scholar 

  43. 43

    Krissinel, E. Enhanced fold recognition using efficient short fragment clustering. J. Mol. Biochem. 1, 76–85 (2012).

    PubMed  PubMed Central  Google Scholar 

  44. 44

    Li, Z., Michael, I.P., Zhou, D., Nagy, A. & Rini, J.M. Simple piggyBac transposon-based mammalian cell expression system for inducible protein production. Proc. Natl. Acad. Sci. USA 110, 5004–5009 (2013).

    CAS  Article  Google Scholar 

  45. 45

    Reeves, P.J., Callewaert, N., Contreras, R. & Khorana, H.G. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc. Natl. Acad. Sci. USA 99, 13419–13424 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46

    Robbins, P.W. et al. Primary structure of the Streptomyces enzyme endo-β-N-acetylglucosaminidase H. J. Biol. Chem. 259, 7577–7583 (1984).

    CAS  Google Scholar 

  47. 47

    Takegawa, K., Nakoshi, M., Iwahara, S., Yamamoto, K. & Tochikura, T. Induction and purification of endo-β-N-acetylglucosaminidase from Arthrobacter protophormiae grown in ovalbumin. Appl. Environ. Microbiol. 55, 3107–3112 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    CAS  Article  Google Scholar 

  49. 49

    Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51

    Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52

    Abdiche, Y., Malashock, D., Pinkerton, A. & Pons, J. Determining kinetics and affinities of protein interactions using a parallel real-time label-free biosensor, the Octet. Anal. Biochem. 377, 209–217 (2008).

    CAS  Article  Google Scholar 

  53. 53

    Gosselin, S., Alhussaini, M., Streiff, M.B., Takabayashi, K. & Palcic, M.M. A continuous spectrophotometric assay for glycosyltransferases. Anal. Biochem. 220, 92–97 (1994).

    CAS  Article  Google Scholar 

  54. 54

    Duggleby, R.G. Analysis of enzyme progress curves by nonlinear regression. Methods Enzymol. 249, 61–90 (1995).

    CAS  Article  Google Scholar 

  55. 55

    Kuzmic, P. Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Anal. Biochem. 237, 260–273 (1996).

    CAS  Article  Google Scholar 

  56. 56

    Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N. & Sternberg, M.J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57

    Ashkenazy, H., Erez, E., Martz, E., Pupko, T. & Ben-Tal, N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 38, W529–W533 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58

    Pettersen, E.F. et al. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59

    Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol.Biol. 372, 774–797 (2007).

    CAS  Article  Google Scholar 

  60. 60

    Laskowski, R.A. & Swindells, M.B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model 51, 2778–2786 (2011).

    CAS  Article  Google Scholar 

Download references


This work was supported by a grant to J.M.R. from the Canadian Institutes of Health Research, Funding Reference Number MOP-125956. X-ray crystallographic data were collected at beamline 08ID-1 at the Canadian Light Source. We also thank the Canadian Macromolecular Crystallography Facility staff for the mail-in data that were collected.

Author information




Z.L., J.E.P. and J.M.R. designed the research. Z.L., K.H., J.E.P. and M.S. performed the experiments. Z.L. carried out the bioinformatic and structural studies. M.S. and D.Z. provided technical assistance. Z.L. and J.M.R. wrote the manuscript.

Corresponding author

Correspondence to James M Rini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–8 and Supplementary Figures 1–14 (PDF 13616 kb)

Supplementary Dataset 1

Statistics for the distribution of EGF-like domain (EGF-LD) types and Ofucosylation motifs in 339 animal species (PDF 7901 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Han, K., Pak, J. et al. Recognition of EGF-like domains by the Notch-modifying O-fucosyltransferase POFUT1. Nat Chem Biol 13, 757–763 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing