Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineering protein stability with atomic precision in a monomeric miniprotein

Abstract

Miniproteins simplify the protein-folding problem, allowing the dissection of forces that stabilize protein structures. Here we describe PPα-Tyr, a designed peptide comprising an α-helix buttressed by a polyproline II helix. PPα-Tyr is water soluble and monomeric, and it unfolds cooperatively with a midpoint unfolding temperature (TM) of 39 °C. NMR structures of PPα-Tyr reveal proline residues docked between tyrosine side chains, as designed. The stability of PPα is sensitive to modifications in the aromatic residues: replacing tyrosine with phenylalanine, i.e., changing three solvent-exposed hydroxyl groups to protons, reduces the TM to 20 °C. We attribute this result to the loss of CH–π interactions between the aromatic and proline rings, which we probe by substituting the aromatic residues with nonproteinogenic side chains. In analyses of natural protein structures, we find a preference for proline–tyrosine interactions over other proline-containing pairs, and observe abundant CH–π interactions in biologically important complexes between proline-rich ligands and SH3 and similar domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of PPα combining polyproline-II and α-helices.
Figure 2: Folding and stability of PPα-Tyr and PPα variants.
Figure 3: NMR structures for the p-substituted phenylalanine variants of PPα.
Figure 4: Pairwise side chain and CH–π interactions in the Protein Data Bank.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Nick Pace, C., Scholtz, J.M. & Grimsley, G.R. Forces stabilizing proteins. FEBS Lett. 588, 2177–2184 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Dougherty, D.A. Cation-π interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science 271, 163–168 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Brandl, M., Weiss, M.S., Jabs, A., Sühnel, J. & Hilgenfeld, R. C-H...π-interactions in proteins. J. Mol. Biol. 307, 357–377 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Bartlett, G.J., Choudhary, A., Raines, R.T. & Woolfson, D.N. n→π* interactions in proteins. Nat. Chem. Biol. 6, 615–620 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yesselman, J.D., Horowitz, S., Brooks, C.L., III & Trievel, R.C. Frequent side chain methyl carbon-oxygen hydrogen bonding in proteins revealed by computational and stereochemical analysis of neutron structures. Proteins 83, 403–410 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bhattacharya, A., Tejero, R. & Montelione, G.T. Evaluating protein structures determined by structural genomics consortia. Proteins 66, 778–795 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Bartlett, G.J., Newberry, R.W., VanVeller, B., Raines, R.T. & Woolfson, D.N. Interplay of hydrogen bonds and n→π* interactions in proteins. J. Am. Chem. Soc. 135, 18682–18688 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zondlo, N.J. & Schepartz, A. Highly specific DNA recognition by a designed iniature protein. J. Am. Chem. Soc. 121, 6938–6939 (1999).

    Article  CAS  Google Scholar 

  9. Gellman, S.H. & Woolfson, D.N. Mini-proteins Trp the light fantastic. Nat. Struct. Biol. 9, 408–410 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Neidigh, J.W., Fesinmeyer, R.M. & Andersen, N.H. Designing a 20-residue protein. Nat. Struct. Biol. 9, 425–430 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Craven, T.W., Cho, M.-K., Traaseth, N.J., Bonneau, R. & Kirshenbaum, K. A miniature protein stabilized by a cation-π interaction network. J. Am. Chem. Soc. 138, 1543–1550 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Woolfson, D.N. The design of coiled-coil structures and assemblies. Adv. Protein Chem. 70, 79–112 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Golemi-Kotra, D. et al. High affinity, paralog-specific recognition of the Mena EVH1 domain by a miniature protein. J. Am. Chem. Soc. 126, 4–5 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Daly, N.L. & Craik, D.J. Bioactive cystine knot proteins. Curr. Opin. Chem. Biol. 15, 362–368 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Bhardwaj, G. et al. Accurate de novo design of hyperstable constrained peptides. Nature 538, 329–335 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pabo, C.O., Peisach, E. & Grant, R.A. Design and selection of novel Cys2His2 zinc finger proteins. Annu. Rev. Biochem. 70, 313–340 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Gifford, J.L., Walsh, M.P. & Vogel, H.J. Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochem. J. 405, 199–221 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. McKnight, C.J., Matsudaira, P.T. & Kim, P.S. NMR structure of the 35-residue villin headpiece subdomain. Nat. Struct. Biol. 4, 180–184 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Cochran, A.G., Skelton, N.J. & Starovasnik, M.A. Tryptophan zippers: stable, monomeric β -hairpins. Proc. Natl. Acad. Sci. USA 98, 5578–5583 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barua, B. et al. The Trp-cage: optimizing the stability of a globular miniprotein. Protein Eng. Des. Sel. 21, 171–185 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Baker, E.G. et al. Local and macroscopic electrostatic interactions in single α-helices. Nat. Chem. Biol. 11, 221–228 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Crick, F.H.C. The packing of α-Helices: simple coiled-coils. Acta Crystallogr. 6, 689–697 (1953).

    Article  CAS  Google Scholar 

  23. Walshaw, J. & Woolfson, D.N. Socket: a program for identifying and analysing coiled-coil motifs within protein structures. J. Mol. Biol. 307, 1427–1450 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Woolfson, D.N. et al. De novo protein design: how do we expand into the universe of possible protein structures? Curr. Opin. Struct. Biol. 33, 16–26 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Plevin, M.J., Bryce, D.L. & Boisbouvier, J. Direct detection of CH–π interactions in proteins. Nat. Chem. 2, 466–471 (2010).

    CAS  PubMed  Google Scholar 

  26. Nishio, M., Umezawa, Y., Fantini, J., Weiss, M.S. & Chakrabarti, P. CH–π hydrogen bonds in biological macromolecules. Phys. Chem. Chem. Phys. 16, 12648–12683 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Blundell, T.L., Pitts, J.E., Tickle, I.J., Wood, S.P. & Wu, C.-W. X-ray analysis (1. 4-A resolution) of avian pancreatic polypeptide: Small globular protein hormone. Proc. Natl. Acad. Sci. USA 78, 4175–4179 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Larson, M.R. et al. Elongated fibrillar structure of a streptococcal adhesin assembled by the high-affinity association of α- and PPII-helices. Proc. Natl. Acad. Sci. USA 107, 5983–5988 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Noelken, M.E., Chang, P.J. & Kimmel, J.R. Conformation and association of pancreatic polypeptide from three species. Biochemistry 19, 1838–1843 (1980).

    Article  CAS  PubMed  Google Scholar 

  30. Fiser, A., Do, R.K.G. & Šali, A. Modeling of loops in protein structures. Protein Sci. 9, 1753–1773 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hu, X., Wang, H., Ke, H. & Kuhlman, B. High-resolution design of a protein loop. Proc. Natl. Acad. Sci. USA 104, 17668–17673 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hudson, K.L. et al. Carbohydrate-aromatic interactions in proteins. J. Am. Chem. Soc. 137, 15152–15160 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Saha, R.P., Bhattacharyya, R. & Chakrabarti, P. Interaction geometry involving planar groups in protein–protein interfaces. Proteins 67, 84–97 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Wheeler, S.E. & Houk, K.N. Through-space effects of substituents dominate molecular electrostatic potentials of substituted arenes. J. Chem. Theory Comput. 5, 2301–2312 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Carver, F.J., Hunter, C.A. & Seward, E.M. Struacture–activity relationship for quantifying aromatic interactions. Chem. Commun. (Camb.) 1998, 775–776 (1998).

    Article  Google Scholar 

  36. Zondlo, N.J. Aromatic-proline interactions: electronically tunable CH–π interactions. Acc. Chem. Res. 46, 1039–1049 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Bloom, J.W.G., Raju, R.K. & Wheeler, S.E. Physical nature of substituent effects in XH/π interactions. J. Chem. Theory Comput. 8, 3167–3174 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. & Tanabe, K. The magnitude of the CH/π interaction between benzene and some model hydrocarbons. J. Am. Chem. Soc. 122, 3746–3753 (2000).

    Article  CAS  Google Scholar 

  39. Kay, B.K., Williamson, M.P. & Sudol, M. The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J. 14, 231–241 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Kay, B.K. SH3 domains come of age. FEBS Lett. 586, 2606–2608 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ball, L.J., Kühne, R., Schneider-Mergener, J. & Oschkinat, H. Recognition of proline-rich motifs by protein–protein-interaction domains. Angew. Chem. Int. Ed. Engl. 44, 2852–2869 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Parsons, Z.D., Bland, J.M., Mullins, E.A. & Eichman, B.F. A catalytic role for C-H/π interactions in base excision repair by Bacillus cereus DNA glycosylase AlkD. J. Am. Chem. Soc. 138, 11485–11488 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, Y., Malamakal, R.M. & Chenoweth, D.M. Aza-Glycine induces collagen hyperstability. J. Am. Chem. Soc. 137, 12422–12425 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Arnold, U. & Raines, R.T. Replacing a single atom accelerates the folding of a protein and increases its thermostability. Org. Biomol. Chem. 14, 6780–6785 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cobos, E.S. et al. A miniprotein scaffold used to assemble the polyproline II binding epitope recognized by SH3 domains. J. Mol. Biol. 342, 355–365 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Velankar, S. et al. PDBe: Protein Data Bank in Europe. Nucleic Acids Res. 38, D308–D317 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, G. & Dunbrack, R.L. Jr. PISCES: recent improvements to a PDB sequence culling server. Nucleic Acids Res. 33, W94–W98 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Singh, J. & Thornton, J.M. Atlas of Protein Side-Chain Interactions Vol. 1 (Oxford University Press, 1992).

  49. Finn, R.D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Fox, N.K., Brenner, S.E. & Chandonia, J.M. SCOPe: Structural Classification of Proteins--extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Res. 42, D304–D309 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Word, J.M., Lovell, S.C., Richardson, J.S. & Richardson, D.C. Asparagine and glutamine: using hydrogen atom contacts in the choice of side chain amide orientation. J. Mol. Biol. 285, 1735–1747 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Kuipers, B.J.H. & Gruppen, H. Prediction of molar extinction coefficients of proteins and peptides using UV absorption of the constituent amino acids at 214 nm to enable quantitative reverse phase high-performance liquid chromatography–mass spectrometry analysis. J. Agric. Food Chem. 55, 5445–5451 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Marky, L.A. & Breslauer, K.J. Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves. Biopolymers 26, 1601–1620 (1987).

    Article  CAS  PubMed  Google Scholar 

  54. LiCata, V.J. & Liu, C.-C. in Methods in Enzymology: Biothermodynamics, Part C (Eds. Johnson, M.L., Holt, J.M., & Ackers, G.K.) Vol. 488, 219–238 (Academic Press, 2011).

  55. Vranken, W.F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Rieping, W. et al. ARIA2: automated NOE assignment and data integration in NMR structure calculation. Bioinformatics 23, 381–382 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Brünger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    PubMed  Google Scholar 

  58. Cheung, M.S., Maguire, M.L., Stevens, T.J. & Broadhurst, R.W. DANGLE: A Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure. J. Magn. Reson. 202, 223–233 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Touw, W.G. et al. A series of PDB-related databanks for everyday needs. Nucleic Acids Res. 43, D364–D368 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Mansiaux, Y., Joseph, A.P., Gelly, J.C. & de Brevern, A.G. Assignment of PolyProline II conformation and analysis of sequence–structure relationship. PLoS One 6, e18401 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

E.G.B. and D.N.W. are supported by a Biotechnology and Biological Sciences Research Council (BBSRC)/ERASynBio grant (BB/M005615/1); K.L.H., G.J.B., J.W.H. and D.N.W. are supported by the ERC (340764); D.N.W. is a Royal Society Wolfson Research Merit Award holder (WM140008); and K.L.P.G. is supported by the Engineering and Physical Sciences Research Council (EPSRC)-funded Bristol Chemical Synthesis Centre for Doctoral Training (EP/G036764/1). We thank BrisSynBio for access to the BBSRC/EPSRC-funded 700 MHz NMR spectrometer (BB/L01386X/1), S. Whittaker and the Henry Wellcome Building NMR Facility at the University of Birmingham for access to the Wellcome Trust–funded 900 MHz spectrometer (099185/Z/12/Z), and R. Alder and members of the Woolfson group for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

E.G.B. and D.N.W. designed the research. E.G.B. made the synthetic peptides and performed the CD spectroscopy and AUC experiments. C.W. and M.P.C. collected the NMR data. C.W., K.L.P.G. and E.G.B. analyzed the NMR data, and C.W. solved the NMR structures. K.L.H., G.J.B., D.N.W. conducted the bioinformatics. E.G.B. and R.B.S. carried out the molecular-dynamics studies. J.W.H. and E.G.B. performed the van't Hoff analyses. E.G.B. and D.N.W. wrote the paper. All authors reviewed and contributed to the manuscript.

Corresponding authors

Correspondence to Emily G Baker or Derek N Woolfson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–5 and Supplementary Figures 1–10 (PDF 5216 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baker, E., Williams, C., Hudson, K. et al. Engineering protein stability with atomic precision in a monomeric miniprotein. Nat Chem Biol 13, 764–770 (2017). https://doi.org/10.1038/nchembio.2380

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2380

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing