Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Membrane curvature regulates ligand-specific membrane sorting of GPCRs in living cells

Abstract

The targeted spatial organization (sorting) of Gprotein-coupled receptors (GPCRs) is essential for their biological function and often takes place in highly curved membrane compartments such as filopodia, endocytic pits, trafficking vesicles or endosome tubules. However, the influence of geometrical membrane curvature on GPCR sorting remains unknown. Here we used fluorescence imaging to establish a quantitative correlation between membrane curvature and sorting of three prototypic class A GPCRs (the neuropeptide Y receptor Y2, the β1 adrenergic receptor and the β2 adrenergic receptor) in living cells. Fitting of a thermodynamic model to the data enabled us to quantify how sorting is mediated by an energetic drive to match receptor shape and membrane curvature. Curvature-dependent sorting was regulated by ligands in a specific manner. We anticipate that this curvature-dependent biomechanical coupling mechanism contributes to the sorting, trafficking and function of transmembrane proteins in general.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantitative analysis of membrane curvature–dependent sorting of TMPs using live-cell imaging of filopodia.
Figure 2: Combined filopodia measurements from multiple cells verify curvature-dependent sorting of the Y2R.
Figure 3: Membrane curvature–dependent sorting of the Y2R is recurrent in artificially pulled cell membrane tethers.
Figure 4: Curvature-dependent sorting of class A GPCRs is governed by structural properties of the proteins and is regulated by agonist activation.

Similar content being viewed by others

References

  1. Allen, J.A., Halverson-Tamboli, R.A. & Rasenick, M.M. Lipid raft microdomains and neurotransmitter signalling. Nat. Rev. Neurosci. 8, 128–140 (2007).

    CAS  PubMed  Google Scholar 

  2. Irannejad, R. et al. Conformational biosensors reveal GPCR signalling from endosomes. Nature 495, 534–538 (2013).

    CAS  PubMed  Google Scholar 

  3. Ritter, S.L. & Hall, R.A. Fine-tuning of GPCR activity by receptor-interacting proteins. Nat. Rev. Mol. Cell Biol. 10, 819–830 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Soubias, O., Teague, W.E. Jr., Hines, K.G. & Gawrisch, K. Rhodopsin/lipid hydrophobic matching-rhodopsin oligomerization and function. Biophys. J. 108, 1125–1132 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kimura, T. et al. Recombinant cannabinoid type 2 receptor in liposome model activates G protein in response to anionic lipid constituents. J. Biol. Chem. 287, 4076–4087 (2012).

    CAS  PubMed  Google Scholar 

  6. Mondal, S. et al. Membrane driven spatial organization of GPCRs. Sci. Rep. 3, 2909 (2013).

    PubMed  PubMed Central  Google Scholar 

  7. Koldsø, H. & Sansom, M.S. Organization and Dynamics of Receptor Proteins in a Plasma Membrane. J. Am. Chem. Soc. 137, 14694–14704 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. Mattila, P.K. & Lappalainen, P. Filopodia: molecular architecture and cellular functions. Nat. Rev. Mol. Cell Biol. 9, 446–454 (2008).

    CAS  PubMed  Google Scholar 

  9. Zimmerberg, J. & Kozlov, M.M. How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 7, 9–19 (2006).

    CAS  PubMed  Google Scholar 

  10. Temkin, P. et al. SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. Nat. Cell Biol. 13, 715–721 (2011).

    PubMed  PubMed Central  Google Scholar 

  11. Iversen, L., Mathiasen, S., Larsen, J.B. & Stamou, D. Membrane curvature bends the laws of physics and chemistry. Nat. Chem. Biol. 11, 822–825 (2015).

    CAS  PubMed  Google Scholar 

  12. Shim, S.H. et al. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc. Natl. Acad. Sci. USA 109, 13978–13983 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Veshaguri, S. et al. Direct observation of proton pumping by a eukaryotic P-type ATPase. Science 351, 1469–1473 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sorre, B. et al. Nature of curvature coupling of amphiphysin with membranes depends on its bound density. Proc. Natl. Acad. Sci. USA 109, 173–178 (2012).

    CAS  PubMed  Google Scholar 

  15. Larsen, J.B. et al. Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases. Nat. Chem. Biol. 11, 192–194 (2015).

    CAS  PubMed  Google Scholar 

  16. Kunding, A.H., Mortensen, M.W., Christensen, S.M. & Stamou, D. A fluorescence-based technique to construct size distributions from single-object measurements: application to the extrusion of lipid vesicles. Biophys. J. 95, 1176–1188 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuo, L.E. et al. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat. Med. 13, 803–811 (2007).

    CAS  PubMed  Google Scholar 

  18. Movafagh, S., Hobson, J.P., Spiegel, S., Kleinman, H.K. & Zukowska, Z. Neuropeptide Y induces migration, proliferation, and tube formation of endothelial cells bimodally via Y1, Y2, and Y5 receptors. FASEB J. 20, 1924–1926 (2006).

    CAS  PubMed  Google Scholar 

  19. Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Stanić, D. et al. Characterization of neuropeptide Y2 receptor protein expression in the mouse brain. I. Distribution in cell bodies and nerve terminals. J. Comp. Neurol. 499, 357–390 (2006).

    PubMed  Google Scholar 

  21. Rustom, A., Saffrich, R., Markovic, I., Walther, P. & Gerdes, H.H. Nanotubular highways for intercellular organelle transport. Science 303, 1007–1010 (2004).

    CAS  PubMed  Google Scholar 

  22. Tian, A. & Baumgart, T. Sorting of lipids and proteins in membrane curvature gradients. Biophys. J. 96, 2676–2688 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bornschlögl, T. et al. Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip. Proc. Natl. Acad. Sci. USA 110, 18928–18933 (2013).

    PubMed  PubMed Central  Google Scholar 

  24. Romero, S. et al. Filopodium retraction is controlled by adhesion to its tip. J. Cell Sci. 125, 4999–5004 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Revenu, C., Athman, R., Robine, S. & Louvard, D. The co-workers of actin filaments: from cell structures to signals. Nat. Rev. Mol. Cell Biol. 5, 635–646 (2004).

    CAS  PubMed  Google Scholar 

  26. Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2003).

    CAS  PubMed  Google Scholar 

  27. Aimon, S. et al. Membrane shape modulates transmembrane protein distribution. Dev. Cell 28, 212–218 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Brownell, W.E., Qian, F. & Anvari, B. Cell membrane tethers generate mechanical force in response to electrical stimulation. Biophys. J. 99, 845–852 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Leijnse, N., Oddershede, L.B. & Bendix, P.M. Helical buckling of actin inside filopodia generates traction. Proc. Natl. Acad. Sci. USA 112, 136–141 (2015).

    CAS  PubMed  Google Scholar 

  30. Markin, V.S. Lateral organization of membranes and cell shapes. Biophys. J. 36, 1–19 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ramaswamy, S., Toner, J. & Prost, J. Nonequilibrium fluctuations, traveling waves, and instabilities in active membranes. Phys. Rev. Lett. 84, 3494–3497 (2000).

    CAS  PubMed  Google Scholar 

  32. Netz, R.R. & Pincus, P. Inhomogeneous fluid membranes: Segregation, ordering, and effective rigidity. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 52, 4114–4128 (1995).

    CAS  PubMed  Google Scholar 

  33. Božič, B., Kralj-Iglič, V. & Svetina, S. Coupling between vesicle shape and lateral distribution of mobile membrane inclusions. Phys. Rev. E 73, 041915 (2006).

    Google Scholar 

  34. Keire, D.A. et al. Primary structures of PYY, [Pro34]PYY, and PYY-(3-36) confer different conformations and receptor selectivity. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G126–G131 (2000).

    CAS  PubMed  Google Scholar 

  35. Baker, J.G. The selectivity of β-adrenoceptor agonists at human β1-, β2- and β3-adrenoceptors. Br. J. Pharmacol. 160, 1048–1061 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lippincott-Schwartz, J. & Phair, R.D. Lipids and cholesterol as regulators of traffic in the endomembrane system. Annu. Rev. Biophys. 39, 559–578 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ramamurthi, K.S., Lecuyer, S., Stone, H.A. & Losick, R. Geometric cue for protein localization in a bacterium. Science 323, 1354–1357 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Galic, M. et al. External push and internal pull forces recruit curvature-sensing N-BAR domain proteins to the plasma membrane. Nat. Cell Biol. 14, 874–881 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hägerstrand, H. et al. Curvature-dependent lateral distribution of raft markers in the human erythrocyte membrane. Mol. Membr. Biol. 23, 277–288 (2006).

    PubMed  Google Scholar 

  40. Palczewski, K. et al. Crystal structure of rhodopsin: a Gprotein-coupled receptor. Science 289, 739–745 (2000).

    CAS  PubMed  Google Scholar 

  41. Rasmussen, S.G.F. et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469, 175–180 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Costanzi, S. On the applicability of GPCR homology models to computer-aided drug discovery: a comparison between in silico and crystal structures of the β2-adrenergic receptor. J. Med. Chem. 51, 2907–2914 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Huber, T., Botelho, A.V., Beyer, K. & Brown, M.F. Membrane model for the G-protein-coupled receptor rhodopsin: hydrophobic interface and dynamical structure. Biophys. J. 86, 2078–2100 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Khelashvili, G. et al. Why GPCRs behave differently in cubic and lamellar lipidic mesophases. J. Am. Chem. Soc. 134, 15858–15868 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Mathiasen, S. et al. Nanoscale high-content analysis using compositional heterogeneities of single proteoliposomes. Nat. Methods 11, 931–934 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gonen, T., Sliz, P., Kistler, J., Cheng, Y. & Walz, T. Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429, 193–197 (2004).

    CAS  PubMed  Google Scholar 

  47. Warne, T. et al. Structure of a β1-adrenergic G-protein-coupled receptor. Nature 454, 486–491 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nygaard, R. et al. The dynamic process of β2-adrenergic receptor activation. Cell 152, 532–542 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Salaita, K. et al. Restriction of receptor movement alters cellular response: physical force sensing by EphA2. Science 327, 1380–1385 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sharpe, H.J., Stevens, T.J. & Munro, S. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 142, 158–169 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Pedersen, S.L. et al. Improving membrane binding as a design strategy for amphipathic peptide hormones: 2-helix variants of PYY3-36. J. Pept. Sci. 18, 579–587 (2012).

    CAS  PubMed  Google Scholar 

  52. Reihani, S.N.S., Mir, S.A., Richardson, A.C. & Oddershede, L.B. Significant improvement of optical traps by tuning standard water immersion objectives. J. Opt. 13, 105301 (2011).

    Google Scholar 

  53. Richardson, A.C., Reihani, N., & Oddershede, L.B. Combining confocal microscopy with precise force-scope optical tweezers. Proc. SPIE 6326, 632628 (2006).

    Google Scholar 

  54. Pontes, B. et al. Cell cytoskeleton and tether extraction. Biophys. J. 101, 43–52 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Berk, D.A. & Hochmuth, R.M. Lateral mobility of integral proteins in red blood cell tethers. Biophys. J. 61, 9–18 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Prévost, C. et al. IRSp53 senses negative membrane curvature and phase separates along membrane tubules. Nat. Commun. 6, 8529 (2015).

    PubMed  Google Scholar 

  57. Kralj-Iglic, V., Heinrich, V., Svetina, S. & Zeks, B. Free energy of closed membrane with anisotropic inclusions. Eur. Phys. J. B 10, 5–8 (1999).

    CAS  Google Scholar 

  58. Callan-Jones, A., Durand, M. & Fournier, J.B. Hydrodynamics of bilayer membranes with diffusing transmembrane proteins. Soft Matter 12, 1791–1800 (2016).

    CAS  PubMed  Google Scholar 

  59. Dill, K.A. & Bromberg, S. Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology (Garland Science, New York, 2003).

  60. Gatz, D.F. & Smith, L. The standard error of a weighted mean concentration. 1. Bootstrapping vs other methods. Atmos. Environ. 29, 1185–1193 (1995).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Lundbeck Foundation (Center of Excellence Biomembranes in Nanomedicine), the Danish Council for Strategic Research (1311-00002B), and the Innovation Fund Denmark (5184-00048B) to D.S.'s research group, by the Danish National Research Foundation (DNRF116) to L.B.O.'s research group and by the Villum Kann Rasmussen Foundation (VKR022593 to P.M.B.).

Author information

Authors and Affiliations

Authors

Contributions

D.S. designed and supervised the project. K.R.R. conducted all experiments and data analysis, A.M. assisted with experiments and data analysis, V.T. helped with cell culturing, and N.S.H. helped design experiments and discuss results. A.C.-J. developed the theoretical sorting model and performed the numerical fits. L.B.O. provided the optical tweezers setup and supervised the optical trapping experiments. N.L. and K.R.R. conducted the pulling tether experiments. N.L. provided the expertise in using the laser tweezers setup, and P.M.B. discussed results and data treatment. K.L.M. and V.F.W. provided the plasmid and know-how for expressing the SNAP-tagged Y2R, β1AR and β2AR. K.J.J. and S.L.P. synthesized the PYY3-36 peptide. All authors discussed the results and commented on the manuscript, which was written by K.R.R. and D.S.

Corresponding author

Correspondence to Dimitrios Stamou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Table 1 and Supplementary Figures 1–5 (PDF 4662 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosholm, K., Leijnse, N., Mantsiou, A. et al. Membrane curvature regulates ligand-specific membrane sorting of GPCRs in living cells. Nat Chem Biol 13, 724–729 (2017). https://doi.org/10.1038/nchembio.2372

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2372

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing