Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Vibrio cholerae quorum-sensing autoinducer CAI-1: analysis of the biosynthetic enzyme CqsA

Abstract

Vibrio cholerae, the bacterium that causes the disease cholera, controls virulence factor production and biofilm development in response to two extracellular quorum-sensing molecules, called autoinducers. The strongest autoinducer, called CAI-1 (for cholera autoinducer-1), was previously identified as (S)-3-hydroxytridecan-4-one. Biosynthesis of CAI-1 requires the enzyme CqsA. Here, we determine the CqsA reaction mechanism, identify the CqsA substrates as (S)-2-aminobutyrate and decanoyl coenzyme A, and demonstrate that the product of the reaction is 3-aminotridecan-4-one, dubbed amino-CAI-1. CqsA produces amino-CAI-1 by a pyridoxal phosphate–dependent acyl-CoA transferase reaction. Amino-CAI-1 is converted to CAI-1 in a subsequent step via a CqsA-independent mechanism. Consistent with this, we find cells release ≥100 times more CAI-1 than amino-CAI-1. Nonetheless, V. cholerae responds to amino-CAI-1 as well as CAI-1, whereas other CAI-1 variants do not elicit a quorum-sensing response. Thus, both CAI-1 and amino-CAI-1 have potential as lead molecules in the development of an anticholera treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural and functional analysis of CqsA.
Figure 2: Activity of in vitro synthesized amino-CAI-1 and related compounds.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Greenberg, E.P. Bacterial communication and group behavior. J. Clin. Invest. 112, 1288–1290 (2003).

    Article  CAS  Google Scholar 

  2. Parsek, M.R. & Greenberg, E.P. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 13, 27–33 (2005).

    Article  CAS  Google Scholar 

  3. Waters, C.M. & Bassler, B.L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005).

    Article  CAS  Google Scholar 

  4. Hammer, B.K. & Bassler, B.L. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol. Microbiol. 50, 101–104 (2003).

    Article  CAS  Google Scholar 

  5. Jobling, M.G. & Holmes, R.K. Characterization of hapR, a positive regulator of the Vibrio cholerae HA/protease gene hap, and its identification as a functional homologue of the Vibrio harveyi luxR gene. Mol. Microbiol. 26, 1023–1034 (1997).

    Article  CAS  Google Scholar 

  6. Miller, M.B., Skorupski, K., Lenz, D., Taylor, R.K. & Bassler, B.L. Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 9, 303–314 (2002).

    Article  Google Scholar 

  7. Zhu, J. & Mekalanos, J.J. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev. Cell 5, 647–656 (2003).

    Article  CAS  Google Scholar 

  8. Zhu, J. et al. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 99, 3129–3134 (2002).

    Article  CAS  Google Scholar 

  9. Higgins, D.A. et al. The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature 450, 883–886 (2007).

    Article  CAS  Google Scholar 

  10. Chen, X. et al. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415, 545–549 (2002).

    Article  CAS  Google Scholar 

  11. Schauder, S., Shokat, K., Surette, M.G. & Bassler, B.L. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum sensing signal molecule. Mol. Microbiol. 41, 463–476 (2001).

    Article  CAS  Google Scholar 

  12. Gopishetty, B. et al. Probing the catalytic mechanism of S-ribosylhomocysteinase (LuxS) with catalytic intermediates and substrate analogues. J. Am. Chem. Soc. 131, 1243–1250 (2009).

    Article  CAS  Google Scholar 

  13. Miller, S.T. et al. Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol. Cell 15, 677–687 (2004).

    Article  CAS  Google Scholar 

  14. Pei, D. & Zhu, J. Mechanism of action of S-ribosylhomocysteinase (LuxS). Curr. Opin. Chem. Biol. 8, 492–497 (2004).

    Article  CAS  Google Scholar 

  15. Eliot, A.C. & Kirsch, J.F. Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu. Rev. Biochem. 73, 383–415 (2004).

    Article  CAS  Google Scholar 

  16. Alexeev, D. et al. The crystal structure of 8-amino-7-oxononanoate synthase: a bacterial PLP-dependent, acyl-CoA-condensing enzyme. J. Mol. Biol. 284, 401–419 (1998).

    Article  CAS  Google Scholar 

  17. Izumi, Y., Morita, H., Tani, Y. & Ogata, K. Partial purification and some properties of 7-keto-8-aminopelargonic acid synthetase, an enzyme involved in biotin biosynthesis. Agric. Biol. Chem. 37, 1327–1333 (1973).

    Article  CAS  Google Scholar 

  18. Webster, S.P. et al. Mechanism of 8-amino-7-oxononanoate synthase: spectroscopic, kinetic, and crystallographic studies. Biochemistry 39, 516–528 (2000).

    Article  CAS  Google Scholar 

  19. Jahan, N. et al. Insights into the biosynthesis of the Vibrio cholerae major autoinducer CAI-1 from the crystal structure of the PLP-dependent enzyme CqsA. J. Mol. Biol. 392, 763–773 (2009).

    Article  CAS  Google Scholar 

  20. Otwinowski, Z. & Minor, W. Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  21. Storoni, L.C., McCoy, A.J. & Read, R.J. Likelihood-enhanced fast rotation functions. Acta Crystallogr. D Biol. Crystallogr. 60, 432–438 (2004).

    Article  Google Scholar 

  22. Perrakis, A., Morris, R. & Lamzin, V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463 (1999).

    Article  CAS  Google Scholar 

  23. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  24. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  25. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  Google Scholar 

  26. Kleywegt, G.J. & Jones, T.A. Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr. D Biol. Crystallogr. 50, 178–185 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff of the National Synchrotron Light Source beamline X29 for assistance with X-ray data collection; N. Ruiz and A. Arnaudo (Princeton University) for strains; and J. Kirsch for insightful discussions. This work was supported by the Howard Hughes Medical Institute; US National Institutes of Health grants AI054442, GM065859 and AI069326; US National Science Foundation grant MCB-0639855; and a Dr. Horst Witzel Fellowship from Cephalon Corporation (to M.E.B.).

Author information

Authors and Affiliations

Authors

Contributions

R.C.K., structural and spectroscopic analyses; M.E.B., chemistry; D.A.H. and W.-L.N., biology; W.L., mass spectrometry; P.D.J., crystallography. J.D.R., M.F.S., F.M.H. and B.L.B. provided guidance.

Corresponding author

Correspondence to Bonnie L Bassler.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1–5 and Supplementary Methods (PDF 1895 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, R., Bolitho, M., Higgins, D. et al. The Vibrio cholerae quorum-sensing autoinducer CAI-1: analysis of the biosynthetic enzyme CqsA. Nat Chem Biol 5, 891–895 (2009). https://doi.org/10.1038/nchembio.237

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.237

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing