Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Structural and functional insight into human O-GlcNAcase

Abstract

O-GlcNAc hydrolase (OGA) removes O-linked N-acetylglucosamine (O-GlcNAc) from a myriad of nucleocytoplasmic proteins. Through co-expression and assembly of OGA fragments, we determined the three-dimensional structure of human OGA, revealing an unusual helix-exchanged dimer that lays a structural foundation for an improved understanding of substrate recognition and regulation of OGA. Structures of OGA in complex with a series of inhibitors define a precise blueprint for the design of inhibitors that have clinical value.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Function and structure of hOGA.
Figure 2: Ligand binding to hOGA.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Hardivillé, S. & Hart, G.W. Cell Metab. 20, 208–213 (2014).

    Article  Google Scholar 

  2. Groves, J.A., Lee, A., Yildirir, G. & Zachara, N.E. Cell Stress Chaperones 18, 535–558 (2013).

    Article  CAS  Google Scholar 

  3. Ferrer, C.M. et al. Mol. Cell 54, 820–831 (2014).

    Article  CAS  Google Scholar 

  4. Lagerlöf, O. et al. Science 351, 1293–1296 (2016).

    Article  Google Scholar 

  5. Liu, F. et al. Brain 132, 1820–1832 (2009).

    Article  Google Scholar 

  6. Yuzwa, S.A. et al. Nat. Chem. Biol. 8, 393–399 (2012).

    Article  CAS  Google Scholar 

  7. Smith, S.M. et al. Alzheimers Dement. 12, P261 (2016).

    Article  Google Scholar 

  8. Lazarus, M.B., Nam, Y., Jiang, J., Sliz, P. & Walker, S. Nature 469, 564–567 (2011).

    Article  CAS  Google Scholar 

  9. Jínek, M. et al. Nat. Struct. Mol. Biol. 11, 1001–1007 (2004).

    Article  Google Scholar 

  10. Gao, Y., Wells, L., Comer, F.I., Parker, G.J. & Hart, G.W. J. Biol. Chem. 276, 9838–9845 (2001).

    Article  CAS  Google Scholar 

  11. Cantarel, B.L. et al. Nucleic Acids Res. 37, D233–D238 (2009).

    Article  CAS  Google Scholar 

  12. Dennis, R.J. et al. Nat. Struct. Mol. Biol. 13, 365–371 (2006).

    Article  CAS  Google Scholar 

  13. Rao, F.V. et al. EMBO J. 25, 1569–1578 (2006).

    Article  CAS  Google Scholar 

  14. Macauley, M.S., Whitworth, G.E., Debowski, A.W., Chin, D. & Vocadlo, D.J. J. Biol. Chem. 280, 25313–25322 (2005).

    Article  CAS  Google Scholar 

  15. Vocadlo, D.J. Curr. Opin. Chem. Biol. 16, 488–497 (2012).

    Article  CAS  Google Scholar 

  16. Butkinaree, C. et al. J. Biol. Chem. 283, 23557–23566 (2008).

    Article  CAS  Google Scholar 

  17. Krissinel, E. Nucleic Acids Res. 43, W314–W319 (2015).

    Article  CAS  Google Scholar 

  18. Wells, L. et al. J. Biol. Chem. 277, 1755–1761 (2002).

    Article  Google Scholar 

  19. Izumi, T. & Suzuki, K. J. Biol. Chem. 258, 6991–6999 (1983).

    CAS  PubMed  Google Scholar 

  20. Schimpl, M., Schüttelkopf, A.W., Borodkin, V.S. & van Aalten, D.M. Biochem. J. 432, 1–7 (2010).

    Article  CAS  Google Scholar 

  21. Cetinbaş, N., Macauley, M.S., Stubbs, K.A., Drapala, R. & Vocadlo, D.J. Biochemistry 45, 3835–3844 (2006).

    Article  Google Scholar 

  22. He, Y., Macauley, M.S., Stubbs, K.A., Vocadlo, D.J. & Davies, G.J. J. Am. Chem. Soc. 132, 1807–1809 (2010).

    Article  CAS  Google Scholar 

  23. Cekic, N. et al. Chem. Sci. (Camb.) 7, 3742–3750 (2016).

    Article  CAS  Google Scholar 

  24. Shanmugasundaram, B. et al. Chem. Commun. (Camb.) 2006, 4372–4374 (2006).

  25. Bergeron-Brlek, M. et al. Angew. Chem. Int. Edn Engl. 54, 15429–15433 (2015).

    Article  CAS  Google Scholar 

  26. Li, M.Z. & Elledge, S.J. Methods Mol. Biol. 852, 51–59 (2012).

    Article  CAS  Google Scholar 

  27. Fogg, M.J. & Wilkinson, A.J. Biochem. Soc. Trans. 36, 771–775 (2008).

    Article  CAS  Google Scholar 

  28. Kabsch, W. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  29. Winter, G. J. Appl. Crystallogr. 43, 186–190 (2010).

    Article  CAS  Google Scholar 

  30. Evans, P.R. & Murshudov, G.N. Acta Crystallogr. D Biol. Crystallogr. 69, 1204–1214 (2013).

    Article  CAS  Google Scholar 

  31. McCoy, A.J. et al. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  32. Cowtan, K. Acta Crystallogr. D Biol. Crystallogr. 62, 1002–1011 (2006).

    Article  Google Scholar 

  33. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  34. Murshudov, G.N. et al. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).

    Article  CAS  Google Scholar 

  35. Adams, P.D. et al. Methods 55, 94–106 (2011).

    Article  CAS  Google Scholar 

  36. Winn, M.D. et al. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    Article  CAS  Google Scholar 

  37. Chen, V.B. et al. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  Google Scholar 

  38. McNicholas, S., Potterton, E., Wilson, K.S. & Noble, M.E. Acta Crystallogr. D Biol. Crystallogr. 67, 386–394 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Diamond Light Source for beamtime (proposals mx-1221, mx-7864, and mx-9948), and the staff of beamlines I02, I03, and I24 for assistance. The authors are grateful to. J.P. Turkenburg and S. Hart for their help in crystal testing and data collection. The authors thank J. Borgia, S. Grist, A. Leech, and L. Haigh for technical support. This research was supported by funding from the Biotechnology and Biological Sciences Research Council (BB/K003836/1) and the Canadian Institutes of Health Research (MOP-123341), Brain Canada, Genome British Columbia, and the Michael Smith Foundation for Health Research. L.I.W. is supported by the Netherlands Organization for Scientific Research (NWO) and the Banting Postdoctoral Fellowships program are also thanked for financial support. R.B. is supported by an MSFHR Career Investigator Award. D.J.V. is supported as a Tier I Canada Research Chair in Chemical Glycobiology. G.J.D. is supported by the Royal Society through a Ken Murray research professorship. S.C. was funded through an Alzheimer's Research UK PhD fellowship.

Author information

Authors and Affiliations

Authors

Contributions

C.R. designed truncated constructs and cloned, expressed, crystallized, and solved the structure of the protein. S.C. designed truncated constructs and cloned, expressed, purified, and crystallized protein. W.A.O. cloned, purified, and crystallized protein. G.R.H. designed experiments and cloned and purified protein. L.I.W. performed cell culture and western blot assays. D.T.K. performed the kinetic characterization. V.V. synthesized VV347. R.B. and D.J.V. designed the pyrrolidine inhibitors. G.J.D. designed cloning and structural experiments. D.J.V. designed biochemical and inhibition experiments. C.R., D.J.V., and G.J.D. wrote the manuscript with contributions from all authors.

Corresponding authors

Correspondence to David J Vocadlo or Gideon J Davies.

Ethics declarations

Competing interests

D.J.V. is a co-founder of and holds equity in the company Alectos Therapeutics. D.J.V. serves as CSO and Chair of the Scientific Advisory Board of Alectos Therapeutics, of which G.J.D. is a member.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1 and 2 and Supplementary Figures 1–16 (PDF 2317 kb)

Supplementary Note

Supplementary Procedures (PDF 569 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roth, C., Chan, S., Offen, W. et al. Structural and functional insight into human O-GlcNAcase. Nat Chem Biol 13, 610–612 (2017). https://doi.org/10.1038/nchembio.2358

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2358

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research