Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Insights into activity and inhibition from the crystal structure of human O-GlcNAcase

Abstract

O-GlcNAc hydrolase (OGA) catalyzes removal of βα-linked N-acetyl-D-glucosamine from serine and threonine residues. We report crystal structures of Homo sapiens OGA catalytic domain in apo and inhibited states, revealing a flexible dimer that displays three unique conformations and is characterized by subdomain α-helix swapping. These results identify new structural features of the substrate-binding groove adjacent to the catalytic site and open new opportunities for structural, mechanistic and drug discovery activities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three dimensional structure of hOGA.
Figure 2: Binding site for inhibitors and substrates of hOGA.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

NCBI Reference Sequence

Protein Data Bank

References

  1. Kreppel, L.K., Blomberg, M.A. & Hart, G.W. J. Biol. Chem. 272, 9308–9315 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Lubas, W.A., Frank, D.W., Krause, M. & Hanover, J.A. J. Biol. Chem. 272, 9316–9324 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Gao, Y., Wells, L., Comer, F.I., Parker, G.J. & Hart, G.W. J. Biol. Chem. 276, 9838–9845 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Shafi, R. et al. Proc. Natl. Acad. Sci. USA 97, 5735–5739 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang, Y.R. et al. Aging Cell 11, 439–448 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Love, D.C. & Hanover, J.A. Sci. STKE 2005, re13 (2005).

    PubMed  Google Scholar 

  7. Ma, J. & Hart, G.W. Expert Rev. Proteomics 10, 365–380 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zachara, N.E. Am. J. Physiol. Heart Circ. Physiol. 302, H1905–H1918 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Singh, J.P., Zhang, K., Wu, J. & Yang, X. Cancer Lett. 356 2 Pt A, 244–250 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Yuzwa, S.A. & Vocadlo, D.J. Chem. Soc. Rev. 43, 6839–6858 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Yuzwa, S.A. et al. Nat. Chem. Biol. 4, 483–490 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Yuzwa, S.A. et al. Nat. Chem. Biol. 8, 393–399 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Cantarel, B.L. et al. Nucleic Acids Res. 37, D233–D238 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Rao, F.V. et al. EMBO J. 25, 1569–1578 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dennis, R.J. et al. Nat. Struct. Mol. Biol. 13, 365–371 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Schimpl, M., Schüttelkopf, A.W., Borodkin, V.S. & van Aalten, D.M. Biochem. J. 432, 1–7 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Cetinbaş, N., Macauley, M.S., Stubbs, K.A., Drapala, R. & Vocadlo, D.J. Biochemistry 45, 3835–3844 (2006).

    Article  PubMed  Google Scholar 

  18. Macauley, M.S., Whitworth, G.E., Debowski, A.W., Chin, D. & Vocadlo, D.J. J. Biol. Chem. 280, 25313–25322 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Butkinaree, C. et al. J. Biol. Chem. 283, 23557–23566 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wells, L. et al. J. Biol. Chem. 277, 1755–1761 (2002).

    Article  PubMed  Google Scholar 

  21. Macauley, M.S. & Vocadlo, D.J. Carbohydr. Res. 344, 1079–1084 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Kim, E.J., Kang, D.O., Love, D.C. & Hanover, J.A. Carbohydr. Res. 341, 971–982 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Keembiyehetty, C.N., Krzeslak, A., Love, D.C. & Hanover, J.A. J. Cell Sci. 124, 2851–2860 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schimpl, M., Borodkin, V.S., Gray, L.J. & van Aalten, D.M. Chem. Biol. 19, 173–178 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Darby, J.F. et al. Angew. Chem. Int. Edn Engl. 53, 13419–13423 (2014).

    Article  CAS  Google Scholar 

  26. Williams, J.W. & Morrison, J.F. Methods Enzymol. 63, 437–467 (1979).

    Article  CAS  PubMed  Google Scholar 

  27. Cheng, Y. & Prusoff, W.H. Biochem. Pharmacol. 22, 3099–3108 (1973).

    Article  CAS  PubMed  Google Scholar 

  28. Vonrhein, C. et al. Acta Crystallogr. D Biol. Crystallogr. 67, 293–302 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McCoy, A.J. et al. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bricogne, G. Acta Crystallogr. D Biol. Crystallogr. 49, 37–60 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Roversi, P., Blanc, E., Vonrhein, C., Evans, G. & Bricogne, G. Acta Crystallogr. D Biol. Crystallogr. 56, 1316–1323 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Duffy, J. Schachter, J. Marcus, H. Su, B. Hayes, K. Babaoglu, D. Vocadlo, E. McEachern and G. McGaughey for valuable discussions, and M.R. Heo for performing size-exclusion chromatography and dynamic light scattering analysis. X-ray diffraction data were collected at beamline 17-ID in the facilities of the Industrial Macromolecular Crystallography Association Collaborative Access Team (IMCA-CAT) at the Advanced Photon Source, Argonne National Laboratories. Use of the IMCA-CAT beamline was supported by the companies of the Industrial Macromolecular Crystallography Association through a contract with Hauptman-Woodward Medical Research Institute. Use of the Advance Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

D.J.K., N.L.E., K.J.L. and S.M.S. designed the project; D.J.K., N.L.E., S.B.P., J.R., R.E.F., D.L.H., J.M.S., H.K. and M.K. performed experiments; D.J.K., N.L.E., K.J.L., S.S., S.M.S., F.H. and H.S. interpreted experimental results; D.J.K., K.J.L. and N.L.E. prepared the manuscript.

Corresponding author

Correspondence to Daniel J Klein.

Ethics declarations

Competing interests

The authors are current or former employees of Merck & Co., Inc. USA and potentially own stock and/or hold stock options in the Company.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–3 and Supplementary Figures 1–8 (PDF 1713 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsen, N., Patel, S., Ford, R. et al. Insights into activity and inhibition from the crystal structure of human O-GlcNAcase. Nat Chem Biol 13, 613–615 (2017). https://doi.org/10.1038/nchembio.2357

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2357

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research