Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Small-molecule pheromones and hormones controlling nematode development

Abstract

The existence of small-molecule signals that influence development in Caenorhabditis elegans has been known for several decades, but only in recent years have the chemical structures of several of these signals been established. The identification of these signals has enabled connections to be made between these small molecules and fundamental signaling pathways in C. elegans that influence not only development but also metabolism, fertility, and lifespan. Spurred by these important discoveries and aided by recent advances in comparative metabolomics and NMR spectroscopy, the field of nematode chemistry has the potential to expand dramatically in the coming years. This Perspective will focus on small-molecule pheromones and hormones that influence developmental events in the nematode life cycle (ascarosides, dafachronic acids, and nemamides), will cover more recent work regarding the biosynthesis of these signals, and will explore how the discovery of these signals is transforming our understanding of nematode development and physiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The dauer pheromone ascarosides and the modular structure of the ascaroside family of pheromones.
Figure 2: Role of insulin/IGF-1 and TGF-β pathways in controlling reproductive growth versus dauer development.
Figure 3: Comparison of the life cycles of several nematode species that produce ascarosides.
Figure 4: Role of the acyl-CoA oxidases ACOX-1.1, ACOX-1.2, and ACOX-1.3 in the biosynthesis of the ascarosides.
Figure 5: Structures of the C. elegans acyl-CoA oxidases ACOX-1.1 and ACOX-1.2.
Figure 6: Biosynthetic pathway of the dafachronic acids.
Figure 7: Discovery and biosynthesis of the nemamides.

Similar content being viewed by others

References

  1. Bargmann, C.I. Chemosensation in C. elegans. WormBook 1–29 (2006).

  2. Robertson, H.M. & Thomas, J.H. The putative chemoreceptor families of C. elegans. WormBook 1–12 (2006).

    Google Scholar 

  3. Antebi, A. Nuclear receptor signal transduction in C. elegans. WormBook 1–49 (2015).

  4. Motola, D.L. et al. Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell 124, 1209–1223 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Jeong, P.Y. et al. Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. Nature 433, 541–545 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Butcher, R.A., Fujita, M., Schroeder, F.C. & Clardy, J. Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nat. Chem. Biol. 3, 420–422 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Butcher, R.A., Ragains, J.R., Kim, E. & Clardy, J. A potent dauer pheromone component in Caenorhabditis elegans that acts synergistically with other components. Proc. Natl. Acad. Sci. USA 105, 14288–14292 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Butcher, R.A., Ragains, J.R. & Clardy, J. An indole-containing dauer pheromone component with unusual dauer inhibitory activity at higher concentrations. Org. Lett. 11, 3100–3103 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pungaliya, C. et al. A shortcut to identifying small-molecule signals that regulate behavior and development in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 106, 7708–7713 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Baugh, L.R. To grow or not to grow: nutritional control of development during Caenorhabditis elegans L1 arrest. Genetics 194, 539–555 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schindler, A.J., Baugh, L.R. & Sherwood, D.R. Identification of late larval stage developmental checkpoints in Caenorhabditis elegans regulated by insulin/IGF and steroid hormone signaling pathways. PLoS Genet. 10, e1004426 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Angelo, G. & Van Gilst, M.R. Starvation protects germline stem cells and extends reproductive longevity in C. elegans. Science 326, 954–958 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Seidel, H.S. & Kimble, J. The oogenic germline starvation response in C. elegans. PLoS One 6, e28074 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cassada, R.C. & Russell, R.L. The dauer larva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev. Biol. 46, 326–342 (1975).

    Article  CAS  PubMed  Google Scholar 

  15. Narbonne, P. & Roy, R. Caenorhabditis elegans dauers need LKB1/AMPK to ration lipid reserves and ensure long-term survival. Nature 457, 210–214 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Erkut, C., Gade, V.R., Laxman, S. & Kurzchalia, T.V. The glyoxylate shunt is essential for desiccation tolerance in C. elegans and budding yeast. eLife 5, e13614 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wadsworth, W.G. & Riddle, D.L. Developmental regulation of energy metabolism in Caenorhabditis elegans. Dev. Biol. 132, 167–173 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. Penkov, S. et al. Integration of carbohydrate metabolism and redox state controls dauer larva formation in Caenorhabditis elegans. Nat. Commun. 6, 8060 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Erkut, C. et al. Trehalose renders the dauer larva of Caenorhabditis elegans resistant to extreme desiccation. Curr. Biol. 21, 1331–1336 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Murphy, C.T. et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424, 277–283 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. McElwee, J.J., Schuster, E., Blanc, E., Thomas, J.H. & Gems, D. Shared transcriptional signature in Caenorhabditis elegans dauer larvae and long-lived daf-2 mutants implicates detoxification system in longevity assurance. J. Biol. Chem. 279, 44533–44543 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Shaw, W.M., Luo, S., Landis, J., Ashraf, J. & Murphy, C.T. The C. elegans TGF-β dauer pathway regulates longevity via insulin signaling. Curr. Biol. 17, 1635–1645 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Félix, M.A. & Duveau, F. Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae. BMC Biol. 10, 59 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fielenbach, N. & Antebi, A. C. elegans dauer formation and the molecular basis of plasticity. Genes Dev. 22, 2149–2165 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hu, P.J. Dauer. WormBook 1–19 (2007).

  26. Hsin, H. & Kenyon, C. Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399, 362–366 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Gerisch, B. et al. A bile acid-like steroid modulates Caenorhabditis elegans lifespan through nuclear receptor signaling. Proc. Natl. Acad. Sci. USA 104, 5014–5019 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gerisch, B., Weitzel, C., Kober-Eisermann, C., Rottiers, V. & Antebi, A. A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Dev. Cell 1, 841–851 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Golden, J.W. & Riddle, D.L. A pheromone influences larval development in the nematode Caenorhabditis elegans. Science 218, 578–580 (1982).

    Article  CAS  PubMed  Google Scholar 

  30. Golden, J.W. & Riddle, D.L. A Caenorhabditis elegans dauer-inducing pheromone and an antagonistic component of the food supply. J. Chem. Ecol. 10, 1265–1280 (1984).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, X., Noguez, J.H., Zhou, Y. & Butcher, R.A. Analysis of ascarosides from Caenorhabditis elegans using mass spectrometry and NMR spectroscopy. Methods Mol. Biol. 1068, 71–92 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Srinivasan, J. et al. A modular library of small-molecule signals regulates social behaviors in Caenorhabditis elegans. PLoS Biol. 10, e1001237 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. von Reuss, S.H. et al. Comparative metabolomics reveals biogenesis of ascarosides, a modular library of small-molecule signals in C. elegans. J. Am. Chem. Soc. 134, 1817–1824 (2012). This paper developed an LC–MS/MS technique to analyze rapidly the ascarosides present in a crude extract that has proven extremely useful for the characterization of ascarosides in a variety of nematode species and in mutants in the ascaroside biosynthetic pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Srinivasan, J. et al. A blend of small molecules regulates both mating and development in Caenorhabditis elegans. Nature 454, 1115–1118 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Izrayelit, Y. et al. Targeted metabolomics reveals a male pheromone and sex-specific ascaroside biosynthesis in Caenorhabditis elegans. ACS Chem. Biol. 7, 1321–1325 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Macosko, E.Z. et al. A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature 458, 1171–1175 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Artyukhin, A.B. et al. Succinylated octopamine ascarosides and a new pathway of biogenic amine metabolism in Caenorhabditis elegans. J. Biol. Chem. 288, 18778–18783 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Greene, J.S. et al. Balancing selection shapes density-dependent foraging behaviour. Nature 539, 254–258 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Greene, J.S., Dobosiewicz, M., Butcher, R.A., McGrath, P.T. & Bargmann, C.I. Regulatory changes in two chemoreceptor genes contribute to a Caenorhabditis elegans QTL for foraging behavior. eLife 5, e21454 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kim, K. et al. Two chemoreceptors mediate developmental effects of dauer pheromone in C. elegans. Science 326, 994–998 (2009). This paper identified the first GPCR targets of the ascarosides.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McGrath, P.T. et al. Parallel evolution of domesticated Caenorhabditis species targets pheromone receptor genes. Nature 477, 321–325 (2011). This paper used pheromone-sensitive and insensitive C. elegans strains and quantitative trait locus mapping to identify a new family of GPCR targets of the ascarosides.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Park, D. et al. Interaction of structure-specific and promiscuous G-protein-coupled receptors mediates small-molecule signaling in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 109, 9917–9922 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Choe, A. et al. Ascaroside signaling is widely conserved among nematodes. Curr. Biol. 22, 772–780 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Noguez, J.H. et al. A novel ascaroside controls the parasitic life cycle of the entomopathogenic nematode Heterorhabditis bacteriophora. ACS Chem. Biol. 7, 961–966 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bose, N. et al. Complex small-molecule architectures regulate phenotypic plasticity in a nematode. Angew. Chem. Int. Edn Engl. 51, 12438–12443 (2012). This paper demonstrated that the nematode P. pacificus produces far more complex ascaroside architectures than those seen in other nematode species that include many different types of primary metabolism-derived building blocks.

    Article  CAS  Google Scholar 

  46. Yim, J.J., Bose, N., Meyer, J.M., Sommer, R.J. & Schroeder, F.C. Nematode signaling molecules derived from multimodular assembly of primary metabolic building blocks. Org. Lett. 17, 1648–1651 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao, L. et al. Ascarosides coordinate the dispersal of a plant-parasitic nematode with the metamorphosis of its vector beetle. Nat. Commun. 7, 12341 (2016). This paper was the first to detect ascarosides in an organism other than a nematode, specifically the vector beetle of pinewood nematode.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Choe, A. et al. Sex-specific mating pheromones in the nematode Panagrellus redivivus. Proc. Natl. Acad. Sci. USA 109, 20949–20954 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Manosalva, P. et al. Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. Nat. Commun. 6, 7795 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Dong, C., Dolke, F. & von Reuss, S.H. Selective MS screening reveals a sex pheromone in Caenorhabditis briggsae and species-specificity in indole ascaroside signalling. Org. Biomol. Chem. 14, 7217–7225 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Bento, G., Ogawa, A. & Sommer, R.J. Co-option of the hormone-signalling module dafachronic acid-DAF-12 in nematode evolution. Nature 466, 494–497 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Bose, N. et al. Natural variation in dauer pheromone production and sensing supports intraspecific competition in nematodes. Curr. Biol. 24, 1536–1541 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Penkov, S. et al. A wax ester promotes collective host finding in the nematode Pristionchus pacificus. Nat. Chem. Biol. 10, 281–285 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Zhao, L., Mota, M., Vieira, P., Butcher, R.A. & Sun, J. Interspecific communication between pinewood nematode, its insect vector, and associated microbes. Trends Parasitol. 30, 299–308 (2014).

    Article  PubMed  Google Scholar 

  55. Zhao, L.L., Wei, W., Kang, L. & Sun, J.H. Chemotaxis of the pinewood nematode, Bursaphelenchus xylophilus, to volatiles associated with host pine, Pinus massoniana, and its vector Monochamus alternatus. J. Chem. Ecol. 33, 1207–1216 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Zhao, L. et al. Chemical signals synchronize the life cycles of a plant-parasitic nematode and its vector beetle. Curr. Biol. 23, 2038–2043 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Zagoriy, V., Matyash, V. & Kurzchalia, T. Long-chain O-ascarosyl-alkanediols are constitutive components of Caenorhabditis elegans but do not induce dauer larva formation. Chem. Biodivers. 7, 2016–2022 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Jezyk, P.F. & Fairbairn, D. Ascarosides and ascaroside esters in Ascaris lumbricoides (Nematoda). Comp. Biochem. Physiol. 23, 691–705 (1967).

    Article  CAS  PubMed  Google Scholar 

  59. Bartley, J.P., Bennett, E.A. & Darben, P.A. Structure of the ascarosides from Ascaris suum. J. Nat. Prod. 59, 921–926 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Fairbairn, D. The biochemistry of Ascaris. Exp. Parasitol. 6, 491–554 (1957).

    Article  CAS  PubMed  Google Scholar 

  61. Butcher, R.A. et al. Biosynthesis of the Caenorhabditis elegans dauer pheromone. Proc. Natl. Acad. Sci. USA 106, 1875–1879 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Izrayelit, Y., Robinette, S.L., Bose, N., von Reuss, S.H. & Schroeder, F.C. 2D NMR-based metabolomics uncovers interactions between conserved biochemical pathways in the model organism Caenorhabditis elegans. ACS Chem. Biol. 8, 314–319 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, X. et al. Acyl-CoA oxidase complexes control the chemical message produced by Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 112, 3955–3960 (2015). This paper directly showed the substrate preference of three ACOX enzymes involved in ascaroside biosynthesis and demonstrated how these play a key role in determining which ascarosides are produced by C. elegans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Johnson, D.A. & Liu, H. Mechanisms and pathways from recent deoxysugar biosynthesis research. Curr. Opin. Chem. Biol. 2, 642–649 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Olson, S.K., Greenan, G., Desai, A., Müller-Reichert, T. & Oegema, K. Hierarchical assembly of the eggshell and permeability barrier in C. elegans. J. Cell Biol. 198, 731–748 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Carvalho, A. et al. Acute drug treatment in the early C. elegans embryo. PLoS One 6, e24656 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Joo, H.J. et al. Caenorhabditis elegans utilizes dauer pheromone biosynthesis to dispose of toxic peroxisomal fatty acids for cellular homoeostasis. Biochem. J. 422, 61–71 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Joo, H.J. et al. Contribution of the peroxisomal acox gene to the dynamic balance of daumone production in Caenorhabditis elegans. J. Biol. Chem. 285, 29319–29325 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang, X., Li, K., Jones, R.A., Bruner, S.D. & Butcher, R.A. Structural characterization of acyl-CoA oxidases reveals a direct link between pheromone biosynthesis and metabolic state in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 113, 10055–10060 (2016). This paper obtained the first crystal structures of the ACOX enzymes, providing a structural basis for their substrate specificities and also revealing an ATP binding site that regulates enzymatic activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Joo, H.J. et al. HSF-1 is involved in regulation of ascaroside pheromone biosynthesis by heat stress in Caenorhabditis elegans. Biochem. J. 473, 789–796 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Kaplan, F. et al. Ascaroside expression in Caenorhabditis elegans is strongly dependent on diet and developmental stage. PLoS One 6, e17804 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yamawaki, T.M. et al. The somatic reproductive tissues of C. elegans promote longevity through steroid hormone signaling. PLoS Biol. 8, e1000468 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shen, Y., Wollam, J., Magner, D., Karalay, O. & Antebi, A. A steroid receptor-microRNA switch regulates life span in response to signals from the gonad. Science 338, 1472–1476 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jia, K., Albert, P.S. & Riddle, D.L. DAF-9, a cytochrome P450 regulating C. elegans larval development and adult longevity. Development 129, 221–231 (2002).

    CAS  PubMed  Google Scholar 

  75. Mahanti, P. et al. Comparative metabolomics reveals endogenous ligands of DAF-12, a nuclear hormone receptor, regulating C. elegans development and lifespan. Cell Metab. 19, 73–83 (2014). This paper provided a revised analysis of the major bioactive dafachronic acids present in C. elegans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rottiers, V. et al. Hormonal control of C. elegans dauer formation and life span by a Rieske-like oxygenase. Dev. Cell 10, 473–482 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Wollam, J. et al. A novel 3-hydroxysteroid dehydrogenase that regulates reproductive development and longevity. PLoS Biol. 10, e1001305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Patel, D.S., Fang, L.L., Svy, D.K., Ruvkun, G. & Li, W. Genetic identification of HSD-1, a conserved steroidogenic enzyme that directs larval development in Caenorhabditis elegans. Development 135, 2239–2249 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Gerisch, B. & Antebi, A. Hormonal signals produced by DAF-9/cytochrome P450 regulate C. elegans dauer diapause in response to environmental cues. Development 131, 1765–1776 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Mak, H.Y. & Ruvkun, G. Intercellular signaling of reproductive development by the C. elegans DAF-9 cytochrome P450. Development 131, 1777–1786 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Matyash, V. et al. Sterol-derived hormone(s) controls entry into diapause in Caenorhabditis elegans by consecutive activation of DAF-12 and DAF-16. PLoS Biol. 2, e280 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hannich, J.T. et al. Methylation of the sterol nucleus by STRM-1 regulates dauer larva formation in Caenorhabditis elegans. Dev. Cell 16, 833–843 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Luciani, G.M. et al. Dafadine inhibits DAF-9 to promote dauer formation and longevity of Caenorhabditis elegans. Nat. Chem. Biol. 7, 891–893 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Schaedel, O.N., Gerisch, B., Antebi, A. & Sternberg, P.W. Hormonal signal amplification mediates environmental conditions during development and controls an irreversible commitment to adulthood. PLoS Biol. 10, e1001306 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Judkins, J.C. et al. A photocleavable masked nuclear-receptor ligand enables temporal control of C.elegans development. Angew. Chem. Int. Edn Engl. 53, 2110–2113 (2014).

    Article  CAS  Google Scholar 

  86. Ogawa, A., Streit, A., Antebi, A. & Sommer, R.J. A conserved endocrine mechanism controls the formation of dauer and infective larvae in nematodes. Curr. Biol. 19, 67–71 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Wang, Z. et al. Identification of the nuclear receptor DAF-12 as a therapeutic target in parasitic nematodes. Proc. Natl. Acad. Sci. USA 106, 9138–9143 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Zhi, X. et al. Structural conservation of ligand binding reveals a bile-acid-like signaling pathway in nematodes. J. Biol. Chem. 287, 4894–4903 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Albarqi, M.M. et al. Regulation of life cycle checkpoints and developmental activation of infective larvae in Strongyloides stercoralis by dafachronic acid. PLoS Pathog. 12, e1005358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Baugh, L.R. & Sternberg, P.W. DAF-16/FOXO regulates transcription of cki-1/Cip/Kip and repression of lin-4 during C. elegans L1 arrest. Curr. Biol. 16, 780–785 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Chen, Y. & Baugh, L.R. Ins-4 and daf-28 function redundantly to regulate C. elegans L1 arrest. Dev. Biol. 394, 314–326 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Lee, B.H. & Ashrafi, K. A TRPV channel modulates C. elegans neurosecretion, larval starvation survival, and adult lifespan. PLoS Genet. 4, e1000213 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fukuyama, M. et al. C. elegans AMPKs promote survival and arrest germline development during nutrient stress. Biol. Open 1, 929–936 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fukuyama, M., Kontani, K., Katada, T. & Rougvie, A.E. The C. elegans hypodermis couples progenitor cell quiescence to the dietary state. Curr. Biol. 25, 1241–1248 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Shou, Q. et al. A hybrid polyketide-nonribosomal peptide in nematodes that promotes larval survival. Nat. Chem. Biol. 12, 770–772 (2016). This paper identified the first hybrid polyketide–nonribosomal peptide from an animal and showed that it influences starvation survival in C. elegans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. O'Brien, R.V., Davis, R.W., Khosla, C. & Hillenmeyer, M.E. Computational identification and analysis of orphan assembly-line polyketide synthases. J. Antibiot. (Tokyo) 67, 89–97 (2014).

    Article  CAS  Google Scholar 

  97. Wang, H., Fewer, D.P., Holm, L., Rouhiainen, L. & Sivonen, K. Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proc. Natl. Acad. Sci. USA 111, 9259–9264 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Artyukhin, A.B., Schroeder, F.C. & Avery, L. Density dependence in Caenorhabditis larval starvation. Sci. Rep. 3, 2777 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Maures, T.J. et al. Males shorten the life span of C. elegans hermaphrodites via secreted compounds. Science 343, 541–544 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Aprison, E.Z. & Ruvinsky, I. Sexually antagonistic male signals manipulate germline and soma of C. elegans hermaphrodites. Curr. Biol. 26, 2827–2833 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH (GM118775), NSF (Career Award, 1555050), Ellison Medical Foundation, Alfred P. Sloan Foundation, and Research Corporation for Science Advancement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca A Butcher.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butcher, R. Small-molecule pheromones and hormones controlling nematode development. Nat Chem Biol 13, 577–586 (2017). https://doi.org/10.1038/nchembio.2356

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2356

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing