Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The chemical basis for electrical signaling

Abstract

Electrical signals generated by minute currents of ions moving across cell membranes are central to all rapid processes in biology. Initiation and propagation of electrical signals requires voltage-gated sodium (NaV) and calcium (CaV) channels. These channels contain a tetramer of membrane-bound subunits or domains comprising a voltage sensor and a pore module. Voltage-dependent activation occurs as membrane depolarization drives outward movements of positive gating changes in the voltage sensor via a sliding-helix mechanism, which leads to a conformational change in the pore module that opens its intracellular activation gate. A unique negatively charged site in the selectivity filter conducts hydrated Na+ or Ca2+ rapidly and selectively. Ion conductance is terminated by voltage-dependent inactivation, which causes asymmetric pore collapse. This Review focuses on recent advances in structure and function of NaV and CaV channels that expand our current understanding of the chemical basis for electrical signaling mechanisms conserved from bacteria to humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall architecture of voltage-gated sodium, calcium, and potassium channels.
Figure 2: Structure of the voltage-sensing module of NaVAb.
Figure 3: Structural models of resting and activated states of voltage-sensing modules.
Figure 4: Structural model of conformational changes during channel activation and pore opening.
Figure 5: Chemical mechanism of ion permeation and selectivity of NaV and CaV channels with structural models of their ion selectivity filters with ions bound.
Figure 6: Conformational changes in the pore associated with slow inactivation.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Prindle, A. et al. Ion channels enable electrical communication in bacterial communities. Nature 527, 59–63 (1984).

    Article  CAS  Google Scholar 

  2. Eckert, P., & Brehm, P. Ionic mechanisms of excitation in Parameciu. Annu. Rev. Biophys. Bioeng 8, 353–383 (1979).

    Article  CAS  PubMed  Google Scholar 

  3. Hille, B. Ionic Channels of Excitable Membranes 3rd ed. (Sinauer Associates Inc., 2001).

    Google Scholar 

  4. Hodgkin, A.L. & Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952).

    Article  CAS  Google Scholar 

  5. Catterall, W.A. The molecular basis of neuronal excitability. Science 223, 653–661 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Takahashi, M., Seagar, M.J., Jones, J.F., Reber, B.F. & Catterall, W.A. Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc. Natl. Acad. Sci. USA 84, 5478–5482 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Noda, M. et al. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312, 121–127 (1984).

    Article  CAS  PubMed  Google Scholar 

  8. Tanabe, T. et al. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328, 313–318 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Yu, F.H. & Catterall, W.A. The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Sci. STKE 2004, re15 (2004).

    Article  PubMed  Google Scholar 

  10. Zakon, H.H. Adaptive evolution of voltage-gated sodium channels: the first 800 million years. Proc. Natl. Acad. Sci. USA 109 (Suppl. 1), 10619–10625 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Catterall, W.A. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26, 13–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Catterall, W.A. & Zheng, N. Deciphering voltage-gated Na+ and Ca2+ channels by studying prokaryotic ancestors. Trends Biochem. Sci. 40, 526–534 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ren, D. et al. A prokaryotic voltage-gated sodium channel. Science 294, 2372–2375 (2001). This article opened up a new era in structure–function studies of sodium and calcium channels by revealing a family bacterial ancestors of simple structure that can be easily manipulated by molecular biological methods and can be studied by X-ray crystallography.

    Article  CAS  PubMed  Google Scholar 

  14. Koishi, R. et al. A superfamily of voltage-gated sodium channels in bacteria. J. Biol. Chem. 279, 9532–9538 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Payandeh, J., Scheuer, T., Zheng, N. & Catterall, W.A. The crystal structure of a voltage-gated sodium channel. Nature 475, 353–358 (2011). This article presented the first crystal structure of a sodium channel and revealed new structural insights into the voltage sensor, ion selectivity filter and pore, and the drug receptor sites and fenestrations leading to them.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Noda, M. et al. Expression of functional sodium channels from cloned cDNA. Nature 322, 826–828 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. Sato, C. et al. The voltage-sensitive sodium channel is a bell-shaped molecule with several cavities. Nature 409, 1047–1051 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Wu, J. et al. Structure of the voltage-gated calcium channel Cav1.1 complex. Science 350, aad2395 (2015). This article (and ref. 19 ) gave the first structural views of a eukaryotic calcium channel. It revealed the subunit architecture of the calcium channel complex and the structure of the central α1-subunit, including the transmembrane fold of the voltage sensor and pore and the ion selectivity filter.

    Article  CAS  PubMed  Google Scholar 

  19. Wu, J. et al. Structure of the voltage-gated calcium channel Cav1.1 at 3.6 Å resolution. Nature 537, 191–196 (2016). This article (and ref. 18 ) gave the first structural views of a eukaryotic calcium channel. It revealed the subunit architecture of the calcium channel complex and the structure of the central α1-subunit, including the transmembrane fold of the voltage sensor and pore and the ion selectivity filter.

    Article  CAS  PubMed  Google Scholar 

  20. Van Petegem, F., Clark, K.A., Chatelain, F.C. & Minor, D.L. Jr. Structure of a complex between a voltage-gated calcium channel β-subunit and an α-subunit domain. Nature 429, 671–675 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, Y.H. et al. Structural basis of the α1-β subunit interaction of voltage-gated Ca2+ channels. Nature 429, 675–680 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Opatowsky, Y., Chen, C.C., Campbell, K.P. & Hirsch, J.A. Structural analysis of the voltage-dependent calcium channel β subunit functional core and its complex with the α 1 interaction domain. Neuron 42, 387–399 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Armstrong, C.M. & Bezanilla, F. Currents related to movement of the gating particles of the sodium channels. Nature 242, 459–461 (1973).

    Article  CAS  PubMed  Google Scholar 

  24. Catterall, W.A. Molecular properties of voltage-sensitive sodium channels. Annu. Rev. Biochem. 55, 953–985 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. Guy, H.R. & Seetharamulu, P. Molecular model of the action potential sodium channel. Proc. Natl. Acad. Sci. USA 83, 508–512 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Catterall, W.A. Ion channel voltage sensors: structure, function, and pathophysiology. Neuron 67, 915–928 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stühmer, W. et al. Structural parts involved in activation and inactivation of the sodium channel. Nature 339, 597–603 (1989).

    Article  PubMed  Google Scholar 

  28. Rogers, J.C., Qu, Y., Tanada, T.N., Scheuer, T. & Catterall, W.A. Molecular determinants of high affinity binding of alpha-scorpion toxin and sea anemone toxin in the S3–S4 extracellular loop in domain IV of the Na+ channel alpha subunit. J. Biol. Chem. 271, 15950–15962 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Cestèle, S. et al. Voltage sensor-trapping: enhanced activation of sodium channels by beta-scorpion toxin bound to the S3–S4 loop in domain II. Neuron 21, 919–931 (1998).

    Article  PubMed  Google Scholar 

  30. Yang, N. & Horn, R. Evidence for voltage-dependent S4 movement in sodium channels. Neuron 15, 213–218 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Yang, N., George, A.L. Jr. & Horn, R. Probing the outer vestibule of a sodium channel voltage sensor. Biophys. J. 73, 2260–2268 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, N., George, A.L. Jr. & Horn, R. Molecular basis of charge movement in voltage-gated sodium channels. Neuron 16, 113–122 (1996).

    Article  PubMed  Google Scholar 

  33. DeCaen, P.G., Yarov-Yarovoy, V., Zhao, Y., Scheuer, T. & Catterall, W.A. Disulfide locking a sodium channel voltage sensor reveals ion pair formation during activation. Proc. Natl. Acad. Sci. USA 105, 15142–15147 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. DeCaen, P.G., Yarov-Yarovoy, V., Sharp, E.M., Scheuer, T. & Catterall, W.A. Sequential formation of ion pairs during activation of a sodium channel voltage sensor. Proc. Natl. Acad. Sci. USA 106, 22498–22503 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. DeCaen, P.G., Yarov-Yarovoy, V., Scheuer, T. & Catterall, W.A. Gating charge interactions with the S1 segment during activation of a Na+ channel voltage sensor. Proc. Natl. Acad. Sci. USA 108, 18825–18830 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yarov-Yarovoy, V. et al. Structural basis for gating charge movement in the voltage sensor of a sodium channel. Proc. Natl. Acad. Sci. USA 109, E93–E102 (2012). This article presented the first complete, high-resolution model of the resting and activated states of a voltage sensor based on Rosetta Membrane modeling and disulfide locking.

    Article  CAS  PubMed  Google Scholar 

  37. Long, S.B., Tao, X., Campbell, E.B. & MacKinnon, R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450, 376–382 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Starace, D.M. & Bezanilla, F. A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427, 548–553 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, X. et al. Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature 486, 130–134 (2012). This article revealed a highly activated conformation of the voltage sensor and, with ref. 46 , revealed the structural basis for the pore-collapse mechanism of slow inactivation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Murata, Y., Iwasaki, H., Sasaki, M., Inaba, K. & Okamura, Y. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435, 1239–1243 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Li, Q. et al. Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain. Nat. Struct. Mol. Biol. 21, 244–252 (2014). This article on an primordial chordate voltage-sensitive phosphatase revealed the structural change upon activation of a voltage sensor for the first time.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guo, J. et al. Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana. Nature 531, 196–201 (2016). This article (with ref. 43 ) revealed the structure of a two-pore channel (TPC) for the first time, including the first structure of an ion channel voltage sensor in the resting state.

    Article  CAS  PubMed  Google Scholar 

  43. Kintzer, A.F. & Stroud, R.M. Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana. Nature 531, 258–262 (2016). This article (with ref. 42 ) revealed the structure of a two-pore channel (TPC) for the first time, including the first structure of an ion channel voltage sensor in the resting state.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Armstrong, C.M. Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J. Gen. Physiol. 58, 413–437 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Doyle, D.A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Payandeh, J., Gamal El-Din, T.M., Scheuer, T., Zheng, N. & Catterall, W.A. Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature 486, 135–139 (2012). This article (with ref. 39 ), revealed the structural basis for the pore-collapse mechanism of slow inactivation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McCusker, E.C. et al. Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing. Nat. Commun. 3, 1102 (2012).

    Article  PubMed  CAS  Google Scholar 

  48. Shaya, D. et al. Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels. J. Mol. Biol. 426, 467–483 (2014). This article revealed the high-resolution structure of the four-helix bundle formed by the C-terminal tail of a bacterial sodium channel.

    Article  CAS  PubMed  Google Scholar 

  49. Naylor, C.E. et al. Molecular basis of ion permeability in a voltage-gated sodium channel. EMBO J. 35, 820–830 (2016). This article showed binding of sodium ions in the selectivity filter of a sodium channel for the first time.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bagnéris, C., Naylor, C.E., McCusker, E.C. & Wallace, B.A. Structural model of the open-closed-inactivated cycle of prokaryotic voltage-gated sodium channels. J. Gen. Physiol. 145, 5–16 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Bagnéris, C. et al. Role of the C-terminal domain in the structure and function of tetrameric sodium channels. Nat. Commun. 4, 2465 (2013).

    Article  PubMed  CAS  Google Scholar 

  52. Long, S.B., Campbell, E.B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Smythe, M.L., Huston, S.E. & Marshall, G.R. The molten helix: effects of solvation on the α to 310 helical transition. J. Am. Chem. Soc. 117, 5445–5452 (1995).

    Article  CAS  Google Scholar 

  54. Chanda, B. & Bezanilla, F. Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation. J. Gen. Physiol. 120, 629–645 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Whicher, J.R. & MacKinnon, R. Structure of the voltage-gated K+ channel Eag1 reveals an alternative voltage sensing mechanism. Science 353, 664–669 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Saotome, K., Singh, A.K., Yelshanskaya, M.V. & Sobolevsky, A.I. Crystal structure of the epithelial calcium channel TRPV6. Nature 534, 506–511 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hille, B. The permeability of the sodium channel to metal cations in myelinated nerve. J. Gen. Physiol. 59, 637–658 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Finol-Urdaneta, R.K. et al. Sodium channel selectivity and conduction: prokaryotes have devised their own molecular strategy. J. Gen. Physiol. 143, 157–171 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mähler, J. & Persson, I. A study of the hydration of the alkali metal ions in aqueous solution. Inorg. Chem. 51, 425–438 (2012).

    Article  PubMed  CAS  Google Scholar 

  60. Harding, M.M. Metal-ligand geometry relevant to proteins and in proteins: sodium and potassium. Acta Crystallogr. D Biol. Crystallogr. 58, 872–874 (2002).

    Article  PubMed  CAS  Google Scholar 

  61. Zhou, Y., Morais-Cabral, J.H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature 414, 43–48 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Chakrabarti, N. et al. Catalysis of Na+ permeation in the bacterial sodium channel NaVAb. Proc. Natl. Acad. Sci. USA 110, 11331–11336 (2013). This article presented molecular dynamic simulations that provide the first description of sodium selectivity and conductance under physiological conditions of ionic composition and membrane potential, and revealed that Glu side chains in the high-field-strength site move inward with each round of sodium transport, creating degenerate modes of sodium conductance coordinated by different combinations of waters of hydration and carboxylate ligands.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ulmschneider, M.B. et al. Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel. Proc. Natl. Acad. Sci. USA 110, 6364–6369 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Barber, A.F. et al. Hinge-bending motions in the pore domain of a bacterial voltage-gated sodium channel. Biochim. Biophys. Acta 1818, 2120–2125 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Corry, B. & Thomas, M. Mechanism of ion permeation and selectivity in a voltage gated sodium channel. J. Am. Chem. Soc. 134, 1840–1846 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Stock, L., Delemotte, L., Carnevale, V., Treptow, W. & Klein, M.L. Conduction in a biological sodium selective channel. J. Phys. Chem. B 117, 3782–3789 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Heinemann, S.H., Terlau, H., Stühmer, W., Imoto, K. & Numa, S. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356, 441–443 (1992).

    Article  CAS  PubMed  Google Scholar 

  68. Favre, I., Moczydlowski, E. & Schild, L. On the structural basis for ionic selectivity among Na+, K+, and Ca2+ in the voltage-gated sodium channel. Biophys. J. 71, 3110–3125 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stephens, R.F., Guan, W., Zhorov, B.S. & Spafford, J.D. Selectivity filters and cysteine-rich extracellular loops in voltage-gated sodium, calcium, and NALCN channels. Front. Physiol. 6, 153 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Almers, W., McCleskey, E.W. & Palade, P.T. A non-selective cation conductance in frog muscle membrane blocked by micromolar external calcium ions. J. Physiol. (Lond.) 353, 565–583 (1984).

    Article  CAS  Google Scholar 

  71. Almers, W. & McCleskey, E.W. Non-selective conductance in calcium channels of frog muscle: calcium selectivity in a single-file pore. J. Physiol. (Lond.) 353, 585–608 (1984).

    Article  CAS  Google Scholar 

  72. Hess, P. & Tsien, R.W. Mechanism of ion permeation through calcium channels. Nature 309, 453–456 (1984).

    Article  CAS  PubMed  Google Scholar 

  73. Tang, L. et al. Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature 505, 56–61 (2014). This article gave structural insights into the mechanism of calcium selectivity in a voltage-gated calcium channel, in which calcium ions interact with a series of four coordination sites and are conducted by a knock-off mechanism.

    Article  PubMed  CAS  Google Scholar 

  74. Yue, L., Navarro, B., Ren, D., Ramos, A. & Clapham, D.E. The cation selectivity filter of the bacterial sodium channel, NaChBac. J. Gen. Physiol. 120, 845–853 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dang, T.X. & McCleskey, E.W. Ion channel selectivity through stepwise changes in binding affinity. J. Gen. Physiol. 111, 185–193 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Adelman, W.J. Jr. & Palti, Y. The effects of external potassium and long duration voltage conditioning on the amplitude of sodium currents in the giant axon of the squid, Loligo pealei. J. Gen. Physiol. 54, 589–606 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vilin, Y.Y. & Ruben, P.C. Slow inactivation in voltage-gated sodium channels: molecular substrates and contributions to channelopathies. Cell Biochem. Biophys. 35, 171–190 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Rudy, B. Slow inactivation of the sodium conductance in squid giant axons. Pronase resistance. J. Physiol. (Lond.) 283, 1–21 (1978).

    Article  CAS  Google Scholar 

  79. Pavlov, E. et al. The pore, not cytoplasmic domains, underlies inactivation in a prokaryotic sodium channel. Biophys. J. 89, 232–242 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Boiteux, C., Vorobyov, I. & Allen, T.W. Ion conduction and conformational flexibility of a bacterial voltage-gated sodium channel. Proc. Natl. Acad. Sci. USA 111, 3454–3459 (2014). This article provided evidence from molecular dynamics that dunking of the carboxylate side chains of the Glu residues in the high-field-strength site is coupled to bending of the S6 segments.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hennessey, T.M. & Kung, C. Slow inactivation of the calcium current of Paramecium is dependent on voltage and not internal calcium. J. Physiol. (Lond.) 365, 165–179 (1985).

    Article  CAS  Google Scholar 

  82. Brehm, P. & Eckert, R. Calcium entry leads to inactivation of calcium channel in Paramecium. Science 202, 1203–1206 (1978).

    Article  CAS  PubMed  Google Scholar 

  83. Catterall, W.A., Perez-Reyes, E., Snutch, T.P. & Striessnig, J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol. Rev. 57, 411–425 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Nilius, B. & Benndorf, K. Joint voltage- and calcium dependent inactivation of Ca channels in frog atrial myocardium. Biomed. Biochim. Acta 45, 795–811 (1986).

    CAS  PubMed  Google Scholar 

  85. Rohl, C.A. et al. Solution structure of the sodium channel inactivation gate. Biochemistry 38, 855–861 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Vargas, E. et al. An emerging consensus on voltage-dependent gating from computational modeling and molecular dynamics simulations. J. Gen. Physiol. 140, 587–594 (2012). This article presented a consensus view of the voltage-dependent activation process of sodium and potassium channels that is consistent with the sliding helix model of voltage sensing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Motoike, H.K. et al. The Na+ channel inactivation gate is a molecular complex: a novel role of the COOH-terminal domain. J. Gen. Physiol. 123, 155–165 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kass, R.S. Sodium channel inactivation in heart: a novel role of the carboxy-terminal domain. J. Cardiovasc. Electrophysiol. 17 (Suppl. 1), S21–S25 (2006).

    Article  PubMed  Google Scholar 

  89. Jan, L.Y. & Jan, Y.N. Voltage-gated potassium channels and the diversity of electrical signalling. J. Physiol. (Lond.) 590, 2591–2599 (2012).

    Article  CAS  Google Scholar 

  90. Tao, X., Lee, A., Limapichat, W., Dougherty, D.A. & MacKinnon, R. A gating charge transfer center in voltage sensors. Science 328, 67–73 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hoshi, T., Zagotta, W.N. & Aldrich, R.W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250, 533–538 (1990).

    Article  CAS  PubMed  Google Scholar 

  92. Zhou, M., Morais-Cabral, J.H., Mann, S. & MacKinnon, R. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature 411, 657–661 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Cuello, L.G., Jogini, V., Cortes, D.M. & Perozo, E. Structural mechanism of C-type inactivation in K+ channels. Nature 466, 203–208 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jan, L.Y. Voltage-gated potassium channels. in Ion Channel Database, IUPHAR/BPS Guide to Pharmacology http://www.guidetopharmacology.org/ (2016).

    Google Scholar 

Download references

Acknowledgements

The research from the authors' laboratories reviewed here and preparation of this article were supported by NIH Research Grants R01 HL112808 and R01 HL117896 (W.A.C. and N.Z.), NIH Research Grant R01 NS15751 (W.A.C.), and the Howard Hughes Medical Institute (N.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A Catterall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catterall, W., Wisedchaisri, G. & Zheng, N. The chemical basis for electrical signaling. Nat Chem Biol 13, 455–463 (2017). https://doi.org/10.1038/nchembio.2353

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2353

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing