Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

LC/MS analysis of cellular RNA reveals NAD-linked RNA

Abstract

We developed a general method to detect cellular small molecule–RNA conjugates that does not rely on the reactivity of the small molecule. This technique revealed NAD-linked RNA in Escherichia coli and Streptomyces venezuelae. Subsequent characterization showed that NAD is a 5′ modification of RNA, cannot be installed in vitro through aberrant transcriptional initiation, is only found among smaller cellular RNAs and is present at a surprisingly high abundance of 3,000 copies per cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Discovery of a small molecule–linked nucleotide of [M-H] m/z = 540.0533 from E. coli and S. venezuelae RNA.
Figure 2: Characterization of NAD-RNA.

Similar content being viewed by others

References

  1. Hoagland, M.B., Stephenson, M.L., Scott, J.F., Hecht, L.I. & Zamecnik, P.C. J. Biol. Chem. 231, 241–257 (1958).

    CAS  PubMed  Google Scholar 

  2. Waters, L.S. & Storz, G. Cell 136, 615–628 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Repoila, F. & Darfeuille, F. Biol. Cell 101, 117–131 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Szostak, J.W., Bartel, D.P. & Luisi, P.L. Nature 409, 387–390 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Visser, C.M. & Kellogg, R.M. J. Mol. Evol. 11, 163–168 (1978).

    Article  CAS  PubMed  Google Scholar 

  6. White, H.B. III. J. Mol. Evol. 7, 101–104 (1976).

    Article  CAS  PubMed  Google Scholar 

  7. Gartner, Z.J. et al. Science 305, 1601–1605 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tse, B.N., Snyder, T.M., Shen, Y. & Liu, D.R. J. Am. Chem. Soc. 130, 15611–15626 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kowtoniuk, W.E., Shen, Y., Heemstra, J.M., Agarwal, I. & Liu, D.R. Proc. Natl. Acad. Sci. USA 106, 7768–7773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wyatt, G.R. Nature 166, 237–238 (1950).

    Article  CAS  PubMed  Google Scholar 

  11. Limbach, P.A., Crain, P.F. & McCloskey, J.A. Nucleic Acids Res. 22, 2183–2196 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pomerantz, S.C. & McCloskey, J.A. Methods Enzymol. 193, 796–824 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Grosjean, H. (ed.) Fine-tuning of RNA Functions by Modification and Editing 1–442 (Springer, New York, 2005).

  14. Hiley, S.L. et al. Nucleic Acids Res. 33, e2 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Romier, C., Dominguez, R., Lahm, A., Dahl, O. & Suck, D. Proteins 32, 414–424 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Jakubowski, H. & Goldman, E. J. Bacteriol. 158, 769–776 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Moore, S.D. & Sauer, R.T. Mol. Microbiol. 58, 456–466 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Frick, D.N. & Richardson, C.C. Annu. Rev. Biochem. 70, 39–80 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Huang, F. Nucleic Acids Res. 31, e8 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Brosius, J., Dull, T.J. & Noller, H.F. Proc. Natl. Acad. Sci. USA 77, 201–204 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tsukiji, S., Pattnaik, S.B. & Suga, H. J. Am. Chem. Soc. 126, 5044–5045 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Breaker, R.R. & Joyce, G.F. J. Mol. Evol. 40, 551–558 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Furuichi, Y. & Miura, K. Nature 253, 374–375 (1975).

    Article  CAS  PubMed  Google Scholar 

  24. Mandal, M. & Breaker, R.R. Nat. Rev. Mol. Cell Biol. 5, 451–463 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Celesnik, H., Deana, A. & Belasco, J.G. Mol. Cell 27, 79–90 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Howard Hughes Medical Institute and the US National Institute of General Medical Sciences, National Institutes of Health (R01GM065865). Y.G.C. and W.E.K. gratefully acknowledge US National Science Foundation Graduate Research Fellowships.

Author information

Authors and Affiliations

Authors

Contributions

Y.G.C., W.E.K. and D.R.L. designed research; Y.G.C., W.E.K., I.A. and Y.S. performed research; Y.G.C., W.E.K. and I.A. contributed new reagents and analytic tools; Y.G.C., W.E.K., I.A., Y.S. and D.R.L. analyzed data; and Y.G.C., W.E.K., Y.S. and D.R.L. wrote the paper.

Corresponding author

Correspondence to David R Liu.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 6738 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Kowtoniuk, W., Agarwal, I. et al. LC/MS analysis of cellular RNA reveals NAD-linked RNA. Nat Chem Biol 5, 879–881 (2009). https://doi.org/10.1038/nchembio.235

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.235

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing