Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phosphorylated glycosphingolipids essential for cholesterol mobilization in Caenorhabditis elegans

Abstract

The nematode Caenorhabditis elegans requires exogenous cholesterol to survive and its depletion leads to early developmental arrest. Thus, tight regulation of cholesterol storage and distribution within the organism is indispensable. Here, we present a novel class of C. elegans phosphorylated glycosphingolipids, phosphoethanolamine glucosylceramides (PEGCs), capable of rescuing larval arrest induced by sterol starvation. We describe the total synthesis of a major PEGC species and demonstrate that the PEGC synthetic counterpart suppresses the dauer-constitutive phenotype of Niemann–Pick C1 (NPC1) and DAF-7/TGF-β mutant worms caused by impaired intracellular sterol trafficking. PEGC biosynthesis depends on functional NPC1 and TGF-β, indicating that these proteins control larval development at least partly through PEGC. Furthermore, glucosylceramide deficiency dramatically reduced PEGC amounts. However, the resulting developmental arrest could be rescued by oversaturation of food with cholesterol. Taken together, these data show that PEGC is essential for C. elegans development through its regulation of sterol mobilization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: L2* arrest caused by sterol depletion can be reversed by the addition of a hydrophilic fraction derived from a total lipid extract of worms.
Figure 2: Assigned structure of the novel phosphoglycolipid class PEGC and total synthesis of d17iso-GlcCer (11) and mmPEGC-C22 (1).
Figure 3: PEGC promotes the development of worms by mobilizing internal sterol pools.
Figure 4: Feeding of NPC-1 mutant worms with 1 suppresses Daf-c phenotype.
Figure 5: Mobilization of the internal pool of sterols by PEGC is under the control of TGF-β/DAF-7.
Figure 6: Larval arrest of PEGC-deficient worms (elo-5 and cgt-3;cgt-1) can be rescued by a high-cholesterol diet.

Similar content being viewed by others

References

  1. Chitwood, D.J. Biochemistry and function of nematode steroids. Crit. Rev. Biochem. Mol. Biol. 34, 273–284 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Matyash, V. et al. Sterol-derived hormone(s) controls entry into diapause in Caenorhabditis elegans by consecutive activation of DAF-12 and DAF-16. PLoS Biol. 2, e280 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Motola, D.L. et al. Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell 124, 1209–1223 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Matyash, V. et al. Distribution and transport of cholesterol in Caenorhabditis elegans. Mol. Biol. Cell 12, 1725–1736 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saini, R. et al. Stereoselective synthesis and hormonal activity of novel dafachronic acids and naturally occurring steroids isolated from corals. Org. Biomol. Chem. 10, 4159–4163 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Lee, S.S. & Schroeder, F.C. Steroids as central regulators of organismal development and lifespan. PLoS Biol. 10, e1001307 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Martin, R., Entchev, E.V., Kurzchalia, T.V. & Knölker, H.-J. Steroid hormones controlling the life cycle of the nematode Caenorhabditis elegans: stereoselective synthesis and biology. Org. Biomol. Chem. 8, 739–750 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Antebi, A., Culotti, J.G. & Hedgecock, E.M. daf-12 regulates developmental age and the dauer alternative in Caenorhabditis elegans. Development 125, 1191–1205 (1998).

    CAS  PubMed  Google Scholar 

  9. Larsen, P.L., Albert, P.S. & Riddle, D.L. Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics 139, 1567–1583 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hannich, J.T. et al. Methylation of the sterol nucleus by STRM-1 regulates dauer larva formation in Caenorhabditis elegans. Dev. Cell 16, 833–843 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Entchev, E.V. et al. LET-767 is required for the production of branched chain and long chain fatty acids in Caenorhabditis elegans. J. Biol. Chem. 283, 17550–17560 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Chitwood, D.J., Lusby, W.R., Thompson, M.J., Kochansky, J.P. & Howarth, O.W. The glycosylceramides of the nematode Caenorhabditis elegans contain an unusual, branched-chain sphingoid base. Lipids 30, 567–573 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Schmidt, R.R. & Michel, J. Facile synthesis of α- and β-O-glycosyl imidates; preparation of glycosides and disaccharides. Angew. Chem. Int. Ed. Engl. 19, 731–732 (1980).

    Article  Google Scholar 

  14. Rathore, H., Hashimoto, T., Igarashi, K., Nukaya, H. & Fullerton, D.S. Cardiac glycosides: 5. Stereoselective syntheses of digitoxigenin α-D, β-D, α-L, and β-L-glucosides. Tetrahedron 41, 5427–5438 (1985).

    Article  CAS  Google Scholar 

  15. Graziani, A., Passacantilli, P., Piancatelli, G. & Tani, S. 2-Deoxy-disaccharide approach to natural and unnatural glycosphingolipids synthesis. Tetrahedron Asymmetry 11, 3921–3937 (2000).

    Article  CAS  Google Scholar 

  16. Richichi, B., Luzzatto, L., Notaro, R., la Marca, G. & Nativi, C. Synthesis of the essential core of the human glycosylphosphatidylinositol (GPI) anchor. Bioorg. Chem. 39, 88–93 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Marza, E., Simonsen, K.T., Faergeman, N.J. & Lesa, G.M. Expression of ceramide glucosyltransferases, which are essential for glycosphingolipid synthesis, is only required in a small subset of C. elegans cells. J. Cell Sci. 122, 822–833 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Griffitts, J.S. et al. Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 307, 922–925 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Tiemeyer, M., Selleck, S.B. & Esko, J.D. in Essentials in Glycobiology 2nd edn. (eds.Varki, A. et al .) Ch. 24 (Cold Spring Harbor Laboratory Press, 2009).

  20. Gerisch, B., Weitzel, C., Kober-Eisermann, C., Rottiers, V. & Antebi, A. A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Dev. Cell 1, 841–851 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Jia, K., Albert, P.S. & Riddle, D.L. DAF-9, a cytochrome P450 regulating C. elegans larval development and adult longevity. Development 129, 221–231 (2002).

    CAS  PubMed  Google Scholar 

  22. Sym, M., Basson, M. & Johnson, C. A model for Niemann-Pick type C disease in the nematode Caenorhabditis elegans. Curr. Biol. 10, 527–530 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Ribeiro, I. et al. Niemann-Pick type C disease: NPC1 mutations associated with severe and mild cellular cholesterol trafficking alterations. Hum. Genet. 109, 24–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Li, J., Brown, G., Ailion, M., Lee, S. & Thomas, J.H. NCR-1 and NCR-2, the C. elegans homologs of the human Niemann-Pick type C1 disease protein, function upstream of DAF-9 in the dauer formation pathways. Development 131, 5741–5752 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Fielenbach, N. & Antebi, A. C. elegans dauer formation and the molecular basis of plasticity. Genes Dev. 22, 2149–2165 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rottiers, V. & Antebi, A. Control of Caenorhabditis elegans life history by nuclear receptor signal transduction. Exp. Gerontol. 41, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Patel, D.S., Fang, L.L., Svy, D.K., Ruvkun, G. & Li, W. Genetic identification of HSD-1, a conserved steroidogenic enzyme that directs larval development in Caenorhabditis elegans. Development 135, 2239–2249 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Ren, P. et al. Control of C. elegans larval development by neuronal expression of a TGF-beta homolog. Science 274, 1389–1391 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, T., Zimmerman, K.K. & Patterson, G.I. Regulation of signaling genes by TGFbeta during entry into dauer diapause in C. elegans. BMC Dev. Biol. 4, 11 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  30. McLaren, J.E., Michael, D.R., Ashlin, T.G. & Ramji, D.P. Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy. Prog. Lipid Res. 50, 331–347 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Abe, A., Wild, S.R., Lee, W.L. & Shayman, J.A. Agents for the treatment of glycosphingolipid storage disorders. Curr. Drug Metab. 2, 331–338 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Kniazeva, M., Crawford, Q.T., Seiber, M., Wang, C.-Y. & Han, M. Monomethyl branched-chain fatty acids play an essential role in Caenorhabditis elegans development. PLoS Biol. 2, E257 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang, H. et al. Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis. Nat. Cell Biol. 13, 1189–1201 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhu, H., Shen, H., Sewell, A.K., Kniazeva, M. & Han, M. A novel sphingolipid-TORC1 pathway critically promotes postembryonic development in Caenorhabditis elegans. eLife 2, e00429 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kniazeva, M., Zhu, H., Sewell, A.K. & Han, M. Lipid-TORC1 pathway promotes neuronal development and foraging behavior under both fed and fasted conditions in C. elegans. Dev. Cell 33, 260–271 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Grant, B. & Hirsh, D. Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol. Biol. Cell 10, 4311–4326 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Smith, M.M. & Levitan, D.J. Human NPC1L1 and NPC1 can functionally substitute for the ncr genes to promote reproductive development in C. elegans. Biochim. Biophys. Acta 1770, 1345–1351 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Sugita, M. et al. Polar glycosphingolipids in annelida. A novel series of glycosphingolipids containing choline phosphate from the earthworm, Pheretima hilgendorf. J. Biol. Chem. 267, 22595–22598 (1992).

    CAS  PubMed  Google Scholar 

  39. Yu, X.-H. et al. NPC1, intracellular cholesterol trafficking and atherosclerosis. Clin. Chim. Acta 429, 69–75 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Schmidt, A.W. et al. Regio- and stereospecific synthesis of cholesterol derivatives and their hormonal activity in Caenorhabditis elegans. European J. Org. Chem. 3687–3706 (2006).

  41. Martin, R., Däbritz, F., Entchev, E.V., Kurzchalia, T.V. & Knölker, H.-J. Stereoselective synthesis of the hormonally active (25S)-Δ7-dafachronic acid, (25S)-Δ4-dafachronic acid, (25S)-dafachronic acid, and (25S)-cholestenoic acid. Org. Biomol. Chem. 6, 4293–4295 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sarov, M. et al. A recombineering pipeline for functional genomics applied to Caenorhabditis elegans. Nat. Methods 3, 839–844 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Fraser, A.G. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Bligh, E.G. & Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).

    CAS  PubMed  Google Scholar 

  46. Herzog, R. et al. A novel informatics concept for high-throughput shotgun lipidomics based on the molecular fragmentation query language. Genome Biol. 12, R8 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all members of the Kurzchalia group and the Knölker group for helpful discussions and E. Entchev and Ü. Coskun for critical reading of the manuscript. We are grateful to K. Ploß from the Max-Planck Institute for Chemical Ecology for her support through the HPLC–MS experiments. We are grateful to the Caenorhabditis Genetics Center (CGC), A. Antebi, G. Lesa and to H. Riezman for providing worm strains. We are indebted to R. Saini (Department of Chemistry, Technische Universität Dresden) for the synthesis of Δ1,7-DA and lophanol. We thank A. Shevchenko for giving us access to the high-resolution mass spectrometer. We thank A.W. Schmidt and M. Gruner for support. Work in the Knölker laboratory was supported by the European Science Foundation EuroMembrane Network (Deutsche Forschungsgemeinschaft (DFG) grant KN 240/13-1). U.S. is grateful to the TUD Graduate Academy for a fellowship.

Author information

Authors and Affiliations

Authors

Contributions

S.B., V.Z., S.P., J.R. and T.V.K. designed and performed biological research; S.B., U.S., V.Z., J.L.S. and T.L. performed analytical research; U.S., R.F.F., R.C. and H.-J.K. developed and performed the total synthesis of mmPEGC-C22 and d17iso-GlcCer; S.B., J.L.S., U.S., T.L., H.-J.K. and T.V.K. analyzed data; all authors discussed the data; and S.B., U.S., S.P., H.-J.K. and T.V.K. wrote the paper.

Corresponding authors

Correspondence to Hans-Joachim Knölker or Teymuras V Kurzchalia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–11 (PDF 2742 kb)

Supplementary Note

Experimental procedures for the syntheses of mmPEGC-C22 and d17iso-GlcCer and corresponding NMR spectra (PDF 5096 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boland, S., Schmidt, U., Zagoriy, V. et al. Phosphorylated glycosphingolipids essential for cholesterol mobilization in Caenorhabditis elegans. Nat Chem Biol 13, 647–654 (2017). https://doi.org/10.1038/nchembio.2347

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2347

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing