Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemical screening identifies ATM as a target for alleviating senescence

Abstract

Senescence, defined as irreversible cell-cycle arrest, is the main driving force of aging and age-related diseases. Here, we performed high-throughput screening to identify compounds that alleviate senescence and identified the ataxia telangiectasia mutated (ATM) inhibitor KU-60019 as an effective agent. To elucidate the mechanism underlying ATM's role in senescence, we performed a yeast two-hybrid screen and found that ATM interacted with the vacuolar ATPase V1 subunits ATP6V1E1 and ATP6V1G1. Specifically, ATM decreased E-G dimerization through direct phosphorylation of ATP6V1G1. Attenuation of ATM activity restored the dimerization, thus consequently facilitating assembly of the V1 and V0 domains with concomitant reacidification of the lysosome. In turn, this reacidification induced the functional recovery of the lysosome/autophagy system and was coupled with mitochondrial functional recovery and metabolic reprogramming. Together, our data reveal a new mechanism through which senescence is controlled by the lysosomal–mitochondrial axis, whose function is modulated by the fine-tuning of ATM activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ATM as a potential target for ameliorating senescence.
Figure 2: ATM interacts with ATP6V1E1 and ATP6V1G1.
Figure 3: ATM controls V1-V0 assembly in the V-ATPase.
Figure 4: Recovery of mitochondrial function through activation of the lysosome/autophagy system.
Figure 5: Decreased ROS levels and abnormal nuclear morphology after KU-60019 treatment.
Figure 6: In vivo effects of KU-60019 on wound healing in aged mice.

Similar content being viewed by others

References

  1. López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    PubMed  PubMed Central  Google Scholar 

  2. Forgac, M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 8, 917–929 (2007).

    CAS  PubMed  Google Scholar 

  3. Kane, P.M. The where, when, and how of organelle acidification by the yeast vacuolar H+-ATPase. Microbiol. Mol. Biol. Rev. 70, 177–191 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Santos, R.X. et al. A synergistic dysfunction of mitochondrial fission/fusion dynamics and mitophagy in Alzheimer's disease. J. Alzheimers Dis. 20 (Suppl. 2), S401–S412 (2010).

    PubMed  PubMed Central  Google Scholar 

  5. Hwang, E.S., Yoon, G. & Kang, H.T. A comparative analysis of the cell biology of senescence and aging. Cell. Mol. Life Sci. 66, 2503–2524 (2009).

    CAS  PubMed  Google Scholar 

  6. Kurz, T., Terman, A., Gustafsson, B. & Brunk, U.T. Lysosomes and oxidative stress in aging and apoptosis. Biochim. Biophys. Acta 1780, 1291–1303 (2008).

    CAS  PubMed  Google Scholar 

  7. Houtkooper, R.H. et al. The metabolic footprint of aging in mice. Sci. Rep. 1, 134 (2011).

    PubMed  PubMed Central  Google Scholar 

  8. Silva, L.P. et al. Measurement of DNA concentration as a normalization strategy for metabolomic data from adherent cell lines. Anal. Chem. 85, 9536–9542 (2013).

    CAS  PubMed  Google Scholar 

  9. Bassaneze, V., Miyakawa, A.A. & Krieger, J.E. Chemiluminescent detection of senescence-associated β galactosidase. Methods Mol. Biol. 965, 157–163 (2013).

    CAS  PubMed  Google Scholar 

  10. Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522 (2005).

    CAS  PubMed  Google Scholar 

  11. Weber, A.M. & Ryan, A.J. ATM and ATR as therapeutic targets in cancer. Pharmacol. Ther. 149, 124–138 (2015).

    CAS  PubMed  Google Scholar 

  12. Kurz, E.U. & Lees-Miller, S.P. DNA damage-induced activation of ATM and ATM-dependent signaling pathways. DNA Repair (Amst.) 3, 889–900 (2004).

    CAS  Google Scholar 

  13. Landis, G.N., Bhole, D. & Tower, J. A search for doxycycline-dependent mutations that increase Drosophila melanogaster life span identifies the VhaSFD, Sugar baby, filamin, fwd and Cctl genes. Genome Biol. 4, R8 (2003).

    PubMed  PubMed Central  Google Scholar 

  14. Hughes, A.L. & Gottschling, D.E. An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 492, 261–265 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Féthière, J. et al. Building the stator of the yeast vacuolar-ATPase: specific interaction between subunits E and G. J. Biol. Chem. 279, 40670–40676 (2004).

    PubMed  Google Scholar 

  16. Tudor, C.O. et al. Construction of phosphorylation interaction networks by text mining of full-length articles using the eFIP system. Database (Oxford) 2015, bav020 (2015).

    Google Scholar 

  17. Leontieva, O.V. & Blagosklonny, M.V. DNA damaging agents and p53 do not cause senescence in quiescent cells, while consecutive re-activation of mTOR is associated with conversion to senescence. Aging (Albany, NY) 2, 924–935 (2010).

    CAS  Google Scholar 

  18. Oot, R.A. & Wilkens, S. Subunit interactions at the V1-Vo interface in yeast vacuolar ATPase. J. Biol. Chem. 287, 13396–13406 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim, S.T., Lim, D.S., Canman, C.E. & Kastan, M.B. Substrate specificities and identification of putative substrates of ATM kinase family members. J. Biol. Chem. 274, 37538–37543 (1999).

    CAS  PubMed  Google Scholar 

  20. Benlekbir, S., Bueler, S.A. & Rubinstein, J.L. Structure of the vacuolar-type ATPase from Saccharomyces cerevisiae at 11-Å resolution. Nat. Struct. Mol. Biol. 19, 1356–1362 (2012).

    CAS  PubMed  Google Scholar 

  21. Murata, Y. et al. Differential localization of the vacuolar H+ pump with G subunit isoforms (G1 and G2) in mouse neurons. J. Biol. Chem. 277, 36296–36303 (2002).

    CAS  PubMed  Google Scholar 

  22. Nelson, N. & Harvey, W.R. Vacuolar and plasma membrane proton-adenosinetriphosphatases. Physiol. Rev. 79, 361–385 (1999).

    CAS  PubMed  Google Scholar 

  23. Wieczorek, H., Brown, D., Grinstein, S., Ehrenfeld, J. & Harvey, W.R. Animal plasma membrane energization by proton-motive V-ATPases. BioEssays 21, 637–648 (1999).

    CAS  PubMed  Google Scholar 

  24. DiCiccio, J.E. & Steinberg, B.E. Lysosomal pH and analysis of the counter ion pathways that support acidification. J. Gen. Physiol. 137, 385–390 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou, J. et al. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion. Cell Res. 23, 508–523 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Jung, T., Bader, N. & Grune, T. Lipofuscin: formation, distribution, and metabolic consequences. Ann. NY Acad. Sci. 1119, 97–111 (2007).

    CAS  PubMed  Google Scholar 

  27. Vázquez, C.L. & Colombo, M.I. Assays to assess autophagy induction and fusion of autophagic vacuoles with a degradative compartment, using monodansylcadaverine (MDC) and DQ-BSA. Methods Enzymol. 452, 85–95 (2009).

    PubMed  Google Scholar 

  28. Guo, S. et al. A rapid and high content assay that measures cyto-ID-stained autophagic compartments and estimates autophagy flux with potential clinical applications. Autophagy 11, 560–572 (2015).

    PubMed  PubMed Central  Google Scholar 

  29. Youle, R.J. & Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12, 9–14 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Shintani, T. & Klionsky, D.J. Autophagy in health and disease: a double-edged sword. Science 306, 990–995 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cimolai, M.C., Alvarez, S., Bode, C. & Bugger, H. Mitochondrial mechanisms in septic cardiomyopathy. Int. J. Mol. Sci. 16, 17763–17778 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Goncalves, S., Paupe, V., Dassa, E.P. & Rustin, P. Deferiprone targets aconitase: implication for Friedreich's ataxia treatment. BMC Neurol. 8, 20 (2008).

    PubMed  PubMed Central  Google Scholar 

  34. Pekovic, V. et al. Conserved cysteine residues in the mammalian lamin A tail are essential for cellular responses to ROS generation. Aging Cell 10, 1067–1079 (2011).

    CAS  PubMed  Google Scholar 

  35. Shiloh, Y. The ATM-mediated DNA-damage response: taking shape. Trends Biochem. Sci. 31, 402–410 (2006).

    CAS  PubMed  Google Scholar 

  36. Nassour, J. et al. Defective DNA single-strand break repair is responsible for senescence and neoplastic escape of epithelial cells. Nat. Commun. 7, 10399 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ashcroft, G.S., Mills, S.J. & Ashworth, J.J. Ageing and wound healing. Biogerontology 3, 337–345 (2002).

    CAS  PubMed  Google Scholar 

  38. Liu, J. et al. Restoration of lysosomal pH in RPE cells from cultured human and ABCA4−/− mice: pharmacologic approaches and functional recovery. Invest. Ophthalmol. Vis. Sci. 49, 772–780 (2008).

    PubMed  Google Scholar 

  39. Brand, M.D. The role of mitochondria in longevity and healthspan. Longev. Healthspan 3, 7 (2014).

    PubMed  PubMed Central  Google Scholar 

  40. Brand, M.D. & Nicholls, D.G. Assessing mitochondrial dysfunction in cells. Biochem. J. 435, 297–312 (2011).

    CAS  PubMed  Google Scholar 

  41. Cao, K. et al. Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells. Sci. Transl. Med. 3, 89ra58 (2011).

    CAS  PubMed  Google Scholar 

  42. Stehling, O., Wilbrecht, C. & Lill, R. Mitochondrial iron-sulfur protein biogenesis and human disease. Biochimie 100, 61–77 (2014).

    CAS  PubMed  Google Scholar 

  43. Breitenbach, M. et al. Mitochondria in ageing: there is metabolism beyond the ROS. FEMS Yeast Res. 14, 198–212 (2014).

    CAS  PubMed  Google Scholar 

  44. Awasthi, P., Foiani, M. & Kumar, A. ATM and ATR signaling at a glance. J. Cell Sci. 128, 4255–4262 (2015).

    CAS  PubMed  Google Scholar 

  45. Hickson, I. et al. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res. 64, 9152–9159 (2004).

    CAS  PubMed  Google Scholar 

  46. Golding, S.E. et al. Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion. Mol. Cancer Ther. 8, 2894–2902 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Shiloh, Y. & Lederman, H.M. Ataxia-telangiectasia (A-T): an emerging dimension of premature ageing. Ageing Res. Rev. 33, 76–88 (2017).

    CAS  PubMed  Google Scholar 

  48. Lee, S.S., Bohrson, C., Pike, A.M., Wheelan, S.J. & Greider, C.W. ATM kinase is required for telomere elongation in mouse and human cells. Cell Rep. 13, 1623–1632 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tong, A.S. et al. ATM and ATR signaling regulate the recruitment of human telomerase to telomeres. Cell Rep. 13, 1633–1646 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Blackburn, E.H., Epel, E.S. & Lin, J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 350, 1193–1198 (2015).

    CAS  PubMed  Google Scholar 

  51. Cho, H., Kim, K.M. & Kim, Y.K. Human proline-rich nuclear receptor coregulatory protein 2 mediates an interaction between mRNA surveillance machinery and decapping complex. Mol. Cell 33, 75–86 (2009).

    CAS  PubMed  Google Scholar 

  52. Wei, J.-D., Kim, J.-Y., Kim, A.-K., Jang, S.K. & Kim, J.-H. RanBPM protein acts as a negative regulator of BLT2 receptor to attenuate BLT2-mediated cell motility. J. Biol. Chem. 288, 26753–26763 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Haggie, P.M. & Verkman, A.S. Unimpaired lysosomal acidification in respiratory epithelial cells in cystic fibrosis. J. Biol. Chem. 284, 7681–7686 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kang, H.T., Lee, K.B., Kim, S.Y., Choi, H.R. & Park, S.C. Autophagy impairment induces premature senescence in primary human fibroblasts. PLoS One 6, e23367 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, C.-S., Chen, W.-N.U., Zhou, M., Arttamangkul, S. & Haugland, R.P. Probing the cathepsin D using a BODIPY FL-pepstatin A: applications in fluorescence polarization and microscopy. J. Biochem. Biophys. Methods 42, 137–151 (2000).

    CAS  PubMed  Google Scholar 

  56. Kang, H.T. & Hwang, E.S. Nicotinamide enhances mitochondria quality through autophagy activation in human cells. Aging Cell 8, 426–438 (2009).

    CAS  PubMed  Google Scholar 

  57. Lin, J.W. et al. Differential requirement for ptf1a in endocrine and exocrine lineages of developing zebrafish pancreas. Dev. Biol. 270, 474–486 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Samsung Advanced Institute of Technology and the DGIST R&D Program of the Ministry of Science, ICT and Technology of Korea (20160165 to Y.-S.L. and 20160172 to S.C.P.).

Author information

Authors and Affiliations

Authors

Contributions

H.T.K., J.T.P., and S.C.P. conceived and designed the experiments; H.T.K. elucidated lysosomal pH regulation by ATM and mitochondrial metabolic reprogramming by ATM inhibitor, and performed experiments including in vitro phosphorylation, confocal imaging, and flow cytometry detecting lysosomes, mitochondria, and autophagic flux; J.T.P. elucidated the effects of ATM inhibitor by HTS and performed wound-healing experiments and flow cytometry detecting lysosomes and mitochondria; K.C. elucidated the interactions between ATM and the V-ATPase V1 subunits, and performed subcellular fractionation; Y.K. performed site-directed mutagenesis; H.J.C.C. measured the frequency of abnormal nuclear morphology and performed neutral comet assays; C.W.J. assisted with HTS and wound-healing experiments; Y.-S.L. performed experiments with ATM shRNA and ATR inhibitor; H.T.K. and J.T.P. analyzed the data; J.T.P. supervised all experiments; J.T.P., H.T.K., Y.-S.L., and S.C.P. wrote and edited the paper.

Corresponding authors

Correspondence to Joon Tae Park, Young-Sam Lee or Sang Chul Park.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–4 and Supplementary Figures 1–15 (PDF 5007 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, H., Park, J., Choi, K. et al. Chemical screening identifies ATM as a target for alleviating senescence. Nat Chem Biol 13, 616–623 (2017). https://doi.org/10.1038/nchembio.2342

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2342

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing