Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The perception of strigolactones in vascular plants

Abstract

Small-molecule hormones play central roles in plant development, ranging from cellular differentiation and organ formation to developmental response instruction in changing environments. A recently discovered collection of related small molecules collectively called strigolactones are of particular interest, as these hormones also function as ecological communicators between plants and fungi and between parasitic plants and their hosts. Advances from model plant systems have begun to unravel how, as a hormone, strigolactone is perceived and transduced. In this Review, we summarize this information and examine how understanding strigolactone hormone signaling is leading to insights into parasitic plant infections. We specifically focus on how the development of chemical probes can be used in combination with model plant systems to dissect strigolactone's perception in the parasitic plant Striga hermonthica. This information is particularly relevant since Striga is considered one of the largest impediments to food security in sub-Saharan Africa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline of important strigolactone (SL) discoveries.
Figure 2: Strigolactone structures.
Figure 3: Strigolactone signaling.
Figure 4: Strigolactone receptors.
Figure 5: S. hermonthica strigolactone chemical biology.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Santner, A., Calderon-Villalobos, L.I. & Estelle, M. Plant hormones are versatile chemical regulators of plant growth. Nat. Chem. Biol. 5, 301–307 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Lumba, S., Cutler, S. & McCourt, P. Plant nuclear hormone receptors: a role for small molecules in protein–protein interactions. Annu. Rev. Cell Dev. Biol. 26, 445–469 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Evans, R.M. & Mangelsdorf, D.J. Nuclear receptors, RXR, and the big bang. Cell 157, 255–266 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xie, X., Yoneyama, K. & Yoneyama, K. The strigolactone story. Annu. Rev. Phytopathol. 48, 93–117 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Lopez-Obando, M., Ligerot, Y., Bonhomme, S., Boyer, F.D. & Rameau, C. Strigolactone biosynthesis and signaling in plant development. Development 142, 3615–3619 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Proust, H. et al. Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens. Development 138, 1531–1539 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Brewer, P.B., Koltai, H. & Beveridge, C.A. Diverse roles of strigolactones in plant development. Mol. Plant 6, 18–28 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Waldie, T., McCulloch, H. & Leyser, O. Strigolactones and the control of plant development: lessons from shoot branching. Plant J. 79, 607–622 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Matthys, C. et al. The whats, the wheres and the hows of strigolactone action in the roots. Planta 243, 1327–1337 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Pandey, A., Sharma, M. & Pandey, G.K. Emerging roles of strigolactones in plant responses to stress and development. Front. Plant Sci. 7, 434 (2016).

    PubMed  PubMed Central  Google Scholar 

  11. Cook, C.E., Whichard, L.P., Turner, B., Wall, M.E. & Egley, G.H. Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154, 1189–1190 (1966). The first report of the identification of strigolactones in vascular plants.

    Article  CAS  PubMed  Google Scholar 

  12. Parker, C. Observations on the current status of Orobanche and Striga problems worldwide. Pest Manag. Sci. 65, 453–459 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Spallek, T., Mutuku, M. & Shirasu, K. The genus Striga: a witch profile. Mol. Plant Pathol. 14, 861–869 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Akiyama, K., Matsuzaki, K. & Hayashi, H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824–827 (2005). A report suggesting strigolactones are a hyphal branching factor in AM fungi.

    Article  CAS  PubMed  Google Scholar 

  15. Umehara, M. et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195–200 (2008). This report and ref. 16 show that strigolactones are hormones in vascular plants.

    Article  CAS  PubMed  Google Scholar 

  16. Gomez-Roldan, V. et al. Strigolactone inhibition of shoot branching. Nature 455, 189–194 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Al-Babili, S. & Bouwmeester, H.J. Strigolactones, a novel carotenoid-derived plant hormone. Annu. Rev. Plant Biol. 66, 161–186 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Zwanenburg, B., Ćavar Zeljković, S. & Pospíšil, T. Synthesis of strigolactones, a strategic account. Pest Manag. Sci. 72, 15–29 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Boyer, F.D. et al. Structure-activity relationship studies of strigolactone-related molecules for branching inhibition in garden pea: molecule design for shoot branching. Plant Physiol. 159, 1524–1544 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Scaffidi, A. et al. Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis. Plant Physiol. 165, 1221–1232 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Umehara, M. et al. Structural requirements of strigolactones for shoot branching inhibition in rice and Arabidopsis. Plant Cell Physiol. 56, 1059–1072 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Alder, A. et al. The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335, 1348–1351 (2012). This report and ref. 23 were key to understanding how SLs are synthesized from carotenoids through carlactone.

    Article  CAS  PubMed  Google Scholar 

  23. Seto, Y. et al. Carlactone is an endogenous biosynthetic precursor for strigolactones. Proc. Natl. Acad. Sci. USA 111, 1640–1645 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abe, S. et al. Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc. Natl. Acad. Sci. USA 111, 18084–18089 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brewer, P.B. et al. Lateral branching oxidoreductase acts in the final stages of strigolactone biosynthesis in Arabidopsis. Proc. Natl. Acad. Sci. USA 113, 6301–6306 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, Y. et al. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat. Chem. Biol. 10, 1028–1033 (2014).

    Article  PubMed  CAS  Google Scholar 

  27. Chow, B. & McCourt, P. Plant hormone receptors: perception is everything. Genes Dev. 20, 1998–2008 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Arumingtyas, E.L., Floyd, R.S., Gregory, M.J. & Murfet, I.C. Branching in Pisum: inheritance and allelism tests with 17 ramosus mutants. Pisum Genet. 24, 17–31 (1992).

    Google Scholar 

  29. Beveridge, C.A., Ross, J.J. & Murfet, I.C. Branching in pea: action of genes Rms3 and Rms4. Plant Physiol. 110, 859–865 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Beveridge, C.A., Symons, G.M., Murfet, I.C., Ross, J.J. & Rameau, C. The rms1 mutant of pea has elevated indole-3-acetic levels and reduced root-sap zeatin riboside content but increased branching controlled by graft-transmissible signal(s). Plant Physiol. 115, 1251–1258 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  31. Morris, S.E., Turnbull, C.G., Murfet, I.C. & Beveridge, C.A. Mutational analysis of branching in pea. Evidence that Rms1 and Rms5 regulate the same novel signal. Plant Physiol. 126, 1205–1213 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Napoli, C. Highly branched phenotype of the petunia dad1–1 mutant is reversed by grafting. Plant Physiol. 111, 27–37 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Simons, J.L., Napoli, C.A., Janssen, B.J., Plummer, K.M. & Snowden, K.C. Analysis of the DECREASED APICAL DOMINANCE genes of petunia in the control of axillary branching. Plant Physiol. 143, 697–706 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ishikawa, S. et al. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol. 46, 79–86 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Stirnberg, P., van De Sande, K. & Leyser, H.M. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129, 1131–1141 (2002). The first report suggesting a role for F-box-mediated proteolysis in strigolactones signaling.

    Article  CAS  PubMed  Google Scholar 

  36. Booker, J. et al. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr. Biol. 14, 1232–1238 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Sorefan, K. et al. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev. 17, 1469–1474 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stirnberg, P., Furner, I.J. & Ottoline Leyser, H.M. MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J. 50, 80–94 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Zhao, J. et al. DWARF3 participates in an SCF complex and associates with DWARF14 to suppress rice shoot branching. Plant Cell Physiol. 55, 1096–1109 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Johnson, X. et al. Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol. 142, 1014–1026 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Larrieu, A. & Vernoux, T. Comparison of plant hormone signalling systems. Essays Biochem. 58, 165–181 (2015).

    Article  PubMed  Google Scholar 

  42. Arite, T. et al. d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol. 50, 1416–1424 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Ueguchi-Tanaka, M. et al. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437, 693–698 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Hamiaux, C. et al. DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr. Biol. 22, 2032–2036 (2012). A report suggesting a D14-type α/β hydrolase is a receptor for strigolactones in vascular plants.

    Article  CAS  PubMed  Google Scholar 

  45. Jiang, L. et al. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504, 401–405 (2013). This report and ref. 46 suggest a simple three-component pathway for strigolactone perception.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou, F. et al. D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling. Nature 504, 406–410 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stanga, J.P., Smith, S.M., Briggs, W.R. & Nelson, D.C. SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis. Plant Physiol. 163, 318–330 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Soundappan, I. et al. SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis. Plant Cell 27, 3143–3159 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shimada, A. et al. Structural basis for gibberellin recognition by its receptor GID1. Nature 456, 520–523 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Murase, K., Hirano, Y., Sun, T.P. & Hakoshima, T. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456, 459–463 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Kagiyama, M. et al. Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. Genes Cells 18, 147–160 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Zhao, L.H. et al. Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res. 23, 436–439 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nakamura, H. et al. Molecular mechanism of strigolactone perception by DWARF14. Nat. Commun. 4, 2613 (2013).

    Article  PubMed  CAS  Google Scholar 

  54. Zhao, L.H. et al. Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3. Cell Res. 25, 1219–1236 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yao, R. et al. DWARF14 is a non-canonical hormone receptor for strigolactone. Nature 536, 469–473 (2016). This report demonstrates the importance of signaling partners in the structural analysis of strigolactones perception.

    Article  CAS  PubMed  Google Scholar 

  56. de Saint Germain, A. et al. An histidine covalent receptor and butenolide complex mediates strigolactone perception. Nat. Chem. Biol. 12, 787–794 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McDonald, A.G. & Tipton, K.F. in Encyclopedia of the Life Sciences (eLS) 1–17 (John Wiley & Sons, Ltd., Chichester, 2012).

    Google Scholar 

  58. Chevalier, F. et al. Strigolactone promotes degradation of DWARF14, an α/β hydrolase essential for strigolactone signaling in Arabidopsis. Plant Cell 26, 1134–1150 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Johnson, D.S., Weerapana, E. & Cravatt, B.F. Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. Future Med. Chem. 2, 949–964 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Waters, M.T. et al. Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 139, 1285–1295 (2012). A report suggesting that D14-type and HTL/KAI2-type α/β hydrolase receptors differentiate between related butenolide compounds and regulate different plant processes.

    Article  CAS  PubMed  Google Scholar 

  61. Flematti, G.R., Ghisalberti, E.L., Dixon, K.W. & Trengove, R.D. A compound from smoke that promotes seed germination. Science 305, 977 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Tsuchiya, Y. et al. A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat. Chem. Biol. 6, 741–749 (2010). This report demonstrates the utility of using chemical genetic screens to uncover roles of strigolactones in plant development.

    Article  CAS  PubMed  Google Scholar 

  63. Toh, S., Holbrook-Smith, D., Stokes, M.E., Tsuchiya, Y. & McCourt, P. Detection of parasitic plant suicide germination compounds using a high-throughput Arabidopsis HTL/KAI2 strigolactone perception system. Chem. Biol. 21, 988–998 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Flematti, G.R., Scaffidi, A., Waters, M.T. & Smith, S.M. Stereospecificity in strigolactone biosynthesis and perception. Planta 243, 1361–1373 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Morffy, N., Faure, L. & Nelson, D.C. Smoke and hormone mirrors: action and evolution of karrikin and strigolactone signaling. Trends Genet. 32, 176–188 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yamaguchi, S. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 59, 225–251 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Ueguchi-Tanaka, M. & Matsuoka, M. The perception of gibberellins: clues from receptor structure. Curr. Opin. Plant Biol. 13, 503–508 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Bythell-Douglas, R. et al. The structure of the karrikin-insensitive protein (KAI2) in Arabidopsis thaliana. PLoS One 8, e54758 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Guo, Y., Zheng, Z., La Clair, J.J., Chory, J. & Noel, J.P. Smoke-derived karrikin perception by the α/β-hydrolase KAI2 from Arabidopsis. Proc. Natl. Acad. Sci. USA 110, 8284–8289 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xu, Y. et al. Structural basis of unique ligand specificity of KAI2-like protein from parasitic weed Striga hermonthica. Sci. Rep. 6, 31386 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yoder, J.I. & Scholes, J.D. Host plant resistance to parasitic weeds; recent progress and bottlenecks. Curr. Opin. Plant Biol. 13, 478–484 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Westwood, J.H., Yoder, J.I., Timko, M.P. & dePamphilis, C.W. The evolution of parasitism in plants. Trends Plant Sci. 15, 227–235 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Yoshida, S. & Shirasu, K. Plants that attack plants: molecular elucidation of plant parasitism. Curr. Opin. Plant Biol. 15, 708–713 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Yoneyama, K. et al. Difference in Striga-susceptibility is reflected in strigolactone secretion profile, but not in compatibility and host preference in arbuscular mycorrhizal symbiosis in two maize cultivars. New Phytol. 206, 983–989 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Akiyama, K., Ogasawara, S., Ito, S. & Hayashi, H. Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol. 51, 1104–1117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Conn, C.E. et al. PLANT EVOLUTION. Convergent evolution of strigolactone perception enabled host detection in parasitic plants. Science 349, 540–543 (2015). This report, along with refs. 77 and 78 , suggests that HTL/KAI2-type α/β hydrolases are strigolactone receptors in Striga hermonthica.

    Article  CAS  PubMed  Google Scholar 

  77. Tsuchiya, Y. et al. PARASITIC PLANTS. Probing strigolactone receptors in Striga hermonthica with fluorescence. Science 349, 864–868 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Toh, S. et al. Structure-function analysis identifies highly sensitive strigolactone receptors in Striga. Science 350, 203–207 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Toh, S. et al. Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant Cell Physiol. 53, 107–117 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Jamil, M., Rodenburg, J., Charnikhova, T. & Bouwmeester, H.J. Pre-attachment Striga hermonthica resistance of New Rice for Africa (NERICA) cultivars based on low strigolactone production. New Phytol. 192, 964–975 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Jamil, M., Charnikhova, T., Houshyani, B., van Ast, A. & Bouwmeester, H.J. Genetic variation in strigolactone production and tillering in rice and its effect on Striga hermonthica infection. Planta 235, 473–484 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Mohemed, N. et al. Evaluation of field resistance to Striga hermonthica (Del.) Benth. in Sorghum bicolor (L.) Moench. The relationship with strigolactones. Pest Manag. Sci. 72, 2082–2090 (2016).

    Article  PubMed  CAS  Google Scholar 

  83. Khan, Z., Midega, C.A., Hooper, A. & Pickett, J. Push-pull: chemical ecology-based integrated pest management technology. J. Chem. Ecol. 42, 689–697 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Tsanuo, M.K. et al. Isoflavanones from the allelopathic aqueous root exudate of Desmodium uncinatum. Phytochemistry 64, 265–273 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Johnson, A.W. et al. The preparation of synthetic analogues of strigol. J. Chem. Soc., Perkin. Trans. 1 1981, 1734–1743 (1981).

    Article  Google Scholar 

  86. Zwanenburg, B., Mwakaboko, A.S., Reizelman, A., Anilkumar, G. & Sethumadhavan, D. Structure and function of natural and synthetic signalling molecules in parasitic weed germination. Pest Manag. Sci. 65, 478–491 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Zwanenburg, B. & Pospísil, T. Structure and activity of strigolactones: new plant hormones with a rich future. Mol. Plant 6, 38–62 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Zwanenburg, B., Mwakaboko, A.S. & Kannan, C. Suicidal germination for parasitic weed control. Pest Manag. Sci. 72, 2016–2025 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Samejima, H., Babiker, A.G., Takikawa, H., Sasaki, M. & Sugimoto, Y. Practicality of the suicidal germination approach for controlling Striga hermonthica. Pest Manag. Sci. 72, 2035–2042 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Fukui, K., Ito, S. & Asami, T. Selective mimics of strigolactone actions and their potential use for controlling damage caused by root parasitic weeds. Mol. Plant 6, 88–99 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Mashita, O. et al. Discovery and identification of 2-methoxy-1-naphthaldehyde as a novel strigolactone-signaling inhibitor. J. Pestic. Sci. 41, 71–78 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Holbrook-Smith, D., Toh, S., Tsuchiya, Y. & McCourt, P. Small-molecule antagonists of germination of the parasitic plant Striga hermonthica. Nat. Chem. Biol. 12, 724–729 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Gutjahr, C. et al. Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science 350, 1521–1524 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Yoshida, S. et al. The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis. New Phytol. 196, 1208–1216 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Reda, F., Dierick, A. & Verkleij, J.A.C. Virulence study of Striga hermonthica populations from Tigray Region (Northern Ethiopia). World J. Agric. Sci 6, 676–682 (2010).

    Google Scholar 

  96. Merkl, R. & Sterner, R. Ancestral protein reconstruction: techniques and applications. Biol. Chem. 397, 1–21 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Harms, M.J. et al. Biophysical mechanisms for large-effect mutations in the evolution of steroid hormone receptors. Proc. Natl. Acad. Sci. USA 110, 11475–11480 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zakas, P.M. et al. Enhancing the pharmaceutical properties of protein drugs by ancestral sequence reconstruction. Nat. Biotechnol. 35, 35–37 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Sharma, S.V., Haber, D.A. & Settleman, J. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat. Rev. Cancer 10, 241–253 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge support from National Science & Engineering Research Council of Canada (NSERC 300001) to P.M. D.H.-S. was partially supported on an NSERC Postgraduate Scholarship–Doctoral (PGS D). The authors also would like to thank A. Subha for helping with chemical structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter McCourt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lumba, S., Holbrook-Smith, D. & McCourt, P. The perception of strigolactones in vascular plants. Nat Chem Biol 13, 599–606 (2017). https://doi.org/10.1038/nchembio.2340

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2340

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing