Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Total RNA-seq to identify pharmacological effects on specific stages of mRNA synthesis

Abstract

Pharmacological perturbation is a powerful tool for understanding mRNA synthesis, but identification of the specific steps of this multi-step process that are targeted by small molecules remains challenging. Here we applied strand-specific total RNA sequencing (RNA-seq) to identify and distinguish specific pharmacological effects on transcription and pre-mRNA processing in human cells. We found unexpectedly that the natural product isoginkgetin, previously described as a splicing inhibitor, inhibits transcription elongation. Compared to well-characterized elongation inhibitors that target CDK9, isoginkgetin caused RNA polymerase accumulation within a broader promoter-proximal band, indicating that elongation inhibition by isoginkgetin occurs after release from promoter-proximal pause. RNA-seq distinguished isoginkgetin and CDK9 inhibitors from topoisomerase I inhibition, which alters elongation across gene bodies. We were able to detect these and other specific defects in mRNA synthesis at low sequencing depth using simple metagene-based metrics. These metrics now enable total-RNA-seq-based screening for high-throughput identification of pharmacological effects on individual stages of mRNA synthesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strand-specific total RNA-seq reveals global accumulation of nonpolyadenylated promoter-proximal RNA transcripts upon isoginkgetin (IsoG) treatment.
Figure 2: RNA-seq metagene-based metrics classify IsoG as a transcription elongation inhibitor.
Figure 3: Clustering by metrics outperforms clustering by gene expression.
Figure 4: IsoG's effect on promoter-proximal RNA polymerase accumulation is distinct from that of CDK9 inhibition.
Figure 5: The topoisomerase inhibitor camptothecin (CPT) decreases pre-mRNA expression along the bodies of long genes.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. Bensaude, O. Inhibiting eukaryotic transcription: which compound to choose? How to evaluate its activity? Transcription 2, 103–108 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chodosh, L.A., Fire, A., Samuels, M. & Sharp, P.A. 5,6-Dichloro-1-beta-D-ribofuranosylbenzimidazole inhibits transcription elongation by RNA polymerase II in vitro. J. Biol. Chem. 264, 2250–2257 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Marshall, N.F. & Price, D.H. Control of formation of two distinct classes of RNA polymerase II elongation complexes. Mol. Cell. Biol. 12, 2078–2090 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wada, T. et al. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 12, 343–356 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yamaguchi, Y. et al. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97, 41–51 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Chao, S.H. et al. Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. J. Biol. Chem. 275, 28345–28348 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Chao, S.H. & Price, D.H. Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J. Biol. Chem. 276, 31793–31799 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Pirngruber, J. et al. CDK9 directs H2B monoubiquitination and controls replication-dependent histone mRNA 3′-end processing. EMBO Rep. 10, 894–900 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rahl, P.B. et al. c-Myc regulates transcriptional pause release. Cell 141, 432–445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Laitem, C. et al. CDK9 inhibitors define elongation checkpoints at both ends of RNA polymerase II-transcribed genes. Nat. Struct. Mol. Biol. 22, 396–403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jonkers, I. & Lis, J.T. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 167–177 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kwak, H. & Lis, J.T. Control of transcriptional elongation. Annu. Rev. Genet. 47, 483–508 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Adelman, K. & Lis, J.T. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat. Rev. Genet. 13, 720–731 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bösken, C.A. et al. The structure and substrate specificity of human Cdk12/Cyclin K. Nat. Commun. 5, 3505 (2014).

    Article  PubMed  CAS  Google Scholar 

  15. Eick, D. & Geyer, M. The RNA polymerase II carboxy-terminal domain (CTD) code. Chem. Rev. 113, 8456–8490 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Moore, M.J. & Proudfoot, N.J. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136, 688–700 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Pawellek, A. et al. Identification of small-molecule inhibitors of pre-mRNA splicing. J. Biol. Chem. 289, 34683–34698 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Disney, M.D. Short-circuiting RNA splicing. Nat. Chem. Biol. 4, 723–724 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. O'Brien, K., Matlin, A.J., Lowell, A.M. & Moore, M.J. The biflavonoid isoginkgetin is a general inhibitor of pre-mRNA splicing. J. Biol. Chem. 283, 33147–33154 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gray, J.M. et al. SnapShot-seq: a method for extracting genome-wide, in vivo mRNA dynamics from a single total RNA sample. PLoS One 9, e89673 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Tseng, C.-K.K. et al. Human telomerase RNA processing and quality control. Cell Rep. 13, 2232–2243 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Huranová, M. et al. The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells. J. Cell Biol. 191, 75–86 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kaida, D. et al. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature 468, 664–668 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Almada, A.E., Wu, X., Kriz, A.J., Burge, C.B. & Sharp, P.A. Promoter directionality is controlled by U1 snRNP and polyadenylation signals. Nature 499, 360–363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ntini, E. et al. Polyadenylation site-induced decay of upstream transcripts enforces promoter directionality. Nat. Struct. Mol. Biol. 20, 923–928 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Ji, X. et al. SR proteins collaborate with 7SK and promoter-associated nascent RNA to release paused polymerase. Cell 153, 855–868 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin, S., Coutinho-Mansfield, G., Wang, D., Pandit, S. & Fu, X.-D. The splicing factor SC35 has an active role in transcriptional elongation. Nat. Struct. Mol. Biol. 15, 819–826 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Misteli, T. & Spector, D.L. RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo. Mol. Cell 3, 697–705 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Gaidatzis, D., Burger, L., Florescu, M. & Stadler, M.B. Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional and post-transcriptional regulation. Nat. Biotechnol. 33, 722–729 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Khodor, Y.L. et al. Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila. Genes Dev. 25, 2502–2512 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Preker, P. et al. RNA exosome depletion reveals transcription upstream of active human promoters. Science 322, 1851–1854 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Jonkers, I., Kwak, H. & Lis, J.T. Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons. eLife 3, e02407 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Albert, B.J. et al. Meayamycin inhibits pre-messenger RNA splicing and exhibits picomolar activity against multidrug-resistant cells. Mol. Cancer Ther. 8, 2308–2318 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gao, Y., Vogt, A., Forsyth, C.J. & Koide, K. Comparison of splicing factor 3b inhibitors in human cells. ChemBioChem 14, 49–52 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Lutz, C.S. et al. Interaction between the U1 snRNP-A protein and the 160-kD subunit of cleavage-polyadenylation specificity factor increases polyadenylation efficiency in vitro. Genes Dev. 10, 325–337 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Mayer, A. et al. Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution. Cell 161, 541–554 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Capranico, G. et al. The effects of camptothecin on RNA polymerase II transcription: roles of DNA topoisomerase I. Biochimie 89, 482–489 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Ljungman, M. & Hanawalt, P.C. The anti-cancer drug camptothecin inhibits elongation but stimulates initiation of RNA polymerase II transcription. Carcinogenesis 17, 31–35 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Darzacq, X. et al. In vivo dynamics of RNA polymerase II transcription. Nat. Struct. Mol. Biol. 14, 796–806 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Singh, J. & Padgett, R.A. Rates of in situ transcription and splicing in large human genes. Nat. Struct. Mol. Biol. 16, 1128–1133 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Veloso, A. et al. Genome-wide transcriptional effects of the anti-cancer agent camptothecin. PLoS One 8, e78190 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stoilov, P., Lin, C.-H., Damoiseaux, R., Nikolic, J. & Black, D.L. A high-throughput screening strategy identifies cardiotonic steroids as alternative splicing modulators. Proc. Natl. Acad. Sci. USA 105, 11218–11223 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Younis, I. et al. Rapid-response splicing reporter screens identify differential regulators of constitutive and alternative splicing. Mol. Cell. Biol. 30, 1718–1728 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fong, N. et al. Effects of transcription elongation rate and Xrn2 exonuclease activity on RNA polymerase II termination suggest widespread kinetic competition. Mol. Cell 60, 256–267 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sansó, M. et al. P-TEFb regulation of transcription termination factor Xrn2 revealed by a chemical genetic screen for Cdk9 substrates. Genes Dev. 30, 117–131 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Shishkin, A.A. et al. Simultaneous generation of many RNA-seq libraries in a single reaction. Nat. Methods 12, 323–325 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Core, L.J., Waterfall, J.J. & Lis, J.T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rabani, M. et al. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat. Biotechnol. 29, 436–442 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schwalb, B. et al. TT-seq maps the human transient transcriptome. Science 352, 1225–1228 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Parkhomchuk, D. et al. Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res. 37, e123 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Mayer, A. & Churchman, L.S. Genome-wide profiling of RNA polymerase transcription at nucleotide resolution in human cells with native elongating transcript sequencing. Nat. Protoc. 11, 813–833 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wuarin, J. & Schibler, U. Physical isolation of nascent RNA chains transcribed by RNA polymerase II: evidence for cotranscriptional splicing. Mol. Cell. Biol. 14, 7219–7225 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Churchman, L.S. & Weissman, J.S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469, 368–373 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Hemberg and D. Harmin for advice on bioinformatic analyses. This work was funded by R01 MH101528-01. M.S. is also supported by National Science Foundation grant 1349248. S.A.B. is supported by the Harvard Medical School Center of Excellence in Systems Pharmacology NIH grant P50 GM107618 and the Giovanni Armenise-Harvard Foundation. H.M.L. and L.S.C's contributions were funded by NHGRI: R01 HG007173. We thank K. Koide (University of Pittsburgh) for sharing meayamycin.

Author information

Authors and Affiliations

Authors

Contributions

M.S. and J.M.G. conceived the study. S.A.B. performed all of the experiments except those mentioned below. A.S. performed the western blot in Figure 4a and data analysis of meayamycin experiments. H.M.L. performed the NET-seq protocol. H.M.L. and L.S.C. helped analyze the NET-Seq data. J.M.G., S.A.B., and M.S. performed bioinformatics analysis. J.M.G., S.A.B., A.S., and M.S. interpreted the results. J.M.G., S.A.B., and M.S. wrote the manuscript.

Corresponding authors

Correspondence to Jesse M Gray or Michael Springer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Table 1 and Supplementary Figures 1–5 (PDF 9252 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boswell, S., Snavely, A., Landry, H. et al. Total RNA-seq to identify pharmacological effects on specific stages of mRNA synthesis. Nat Chem Biol 13, 501–507 (2017). https://doi.org/10.1038/nchembio.2317

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2317

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research