Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Engineering fatty acid synthases for directed polyketide production

Abstract

In this study, we engineered fatty acid synthases (FAS) for the biosynthesis of short-chain fatty acids and polyketides, guided by a combined in vitro and in silico approach. Along with exploring the synthetic capability of FAS, we aim to build a foundation for efficient protein engineering, with the specific goal of harnessing evolutionarily related megadalton-scale polyketide synthases (PKS) for the tailored production of bioactive natural compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Engineered reaction pathway for 6-HHP.
Figure 2: FAS mediated synthesis and computational modeling.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Lynen, F. Methods Enzymol. 14, 17–33 (1969).

    Article  CAS  Google Scholar 

  2. Maier, T., Leibundgut, M., Boehringer, D. & Ban, N. Q. Rev. Biophys. 43, 373–422 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Enderle, M., McCarthy, A., Paithankar, K.S. & Grininger, M. Acta Crystallogr. F Struct. Biol. Commun. 71, 1401–1407 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zha, W., Shao, Z., Frost, J.W. & Zhao, H. J. Am. Chem. Soc. 126, 4534–4535 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Choi, Y.J. & Lee, S.Y. Nature 502, 571–574 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Peralta-Yahya, P.P., Zhang, F., del Cardayre, S.B. & Keasling, J.D. Nature 488, 320–328 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Chia, M., Schwartz, T.J., Shanks, B.H. & Dumesic, J.A. Green Chem. 14, 1850–1853 (2012).

    Article  CAS  Google Scholar 

  8. Sumper, M., Oesterhelt, D., Riepertinger, C. & Lynen, F. Eur. J. Biochem. 10, 377–387 (1969).

    Article  CAS  PubMed  Google Scholar 

  9. Pirson, W., Schuhmann, L. & Lynen, F. Eur. J. Biochem. 36, 16–24 (1973).

    Article  CAS  PubMed  Google Scholar 

  10. Leibundgut, M., Jenni, S., Frick, C. & Ban, N. Science 316, 288–290 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Lomakin, I.B., Xiong, Y. & Steitz, T.A. Cell 129, 319–332 (2007).

    Article  PubMed  Google Scholar 

  12. Johansson, P. et al. Proc. Natl. Acad. Sci. USA. 105, 12803–12808 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Morisaki, N. et al. Eur. J. Biochem. 211, 111–115 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Aritomi, K. et al. Biosci. Biotechnol. Biochem. 68, 206–214 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Christensen, C.E., Kragelund, B.B., von Wettstein-Knowles, P. & Henriksen, A. Protein Sci. 16, 261–272 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rangan, V.S. & Smith, S. J. Biol. Chem. 272, 11975–11978 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Bunkoczi, G. et al. Chem. Biol. 16, 667–675 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gillespie, D.T. J. Phys. Chem. 81, 2340–2361 (1977).

    Article  CAS  Google Scholar 

  19. Kresze, G.-B., Steber, L., Oesterhelt, D. & Lynen, F. Eur. J. Biochem. 79, 191–199 (1977).

    Article  CAS  PubMed  Google Scholar 

  20. Zhu, Z. et al. Nat. Chem. Biol. 13 http://dx.doi.org/10.1038/nchembio.2301 (2017).

  21. Robbins, T., Liu, Y.-C., Cane, D.E. & Khosla, C. Curr. Opin. Struct. Biol. 41, 10–18 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hertweck, C. Angew. Chem. Int. Ed. Engl. 48, 4688–4716 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Carter, G.T. Nat. Prod. Rep. 28, 1783–1789 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Cane, D.E., Walsh, C.T. & Khosla, C. Science 282, 63–68 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Menzella, H.G. et al. Nat. Biotechnol. 23, 1171–1176 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, X. et al. Synthesis 5, 749–753 (2007).

    CAS  Google Scholar 

  27. Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. J. Chem. Theory Comput. 4, 435–447 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Seeliger, D., Buelens, F.P., Goette, M., de Groot, B.L. & Grubmüller, H. Nucleic Acids Res. 39, 8281–8290 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Buelens, F.P. & Grubmüller, H. J. Comput. Chem. 33, 25–33 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Lindorff-Larsen, K. et al. Proteins 78, 1950–1958 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A. & Case, D.A. J. Comput. Chem. 25, 1157–1174 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Boresch, S., Tettinger, F., Leitgeb, M. & Karplus, M. J. Phys. Chem. B 107, 9535–9551 (2003).

    Article  CAS  Google Scholar 

  33. Olsen, J.G., Kadziola, A., von Wettstein-Knowles, P., Siggaard-Andersen, M. & Larsen, S. Structure 9, 233–243 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Oefner, C., Schulz, H., D'Arcy, A. & Dale, G.E. Acta Crystallogr. D Biol. Crystallogr. 62, 613–618 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Matijczak and M. Enderle for starting the project with us by establishing purification of Corynebacterium ammoniagenes FAS and cloning first constructs. M.G. and H.G. thank D. Oesterhelt for continuous support over many years and for initiating the collaboration between H.G. and M.G. This work was supported by a Lichtenberg Grant of the Volkswagen Foundation to M.G. (grant number 85 701), the German Federal Ministry of Education and Research to F.B. (grant number 0315450I), the DFG excellence program CNMBP to F.B. (DFG-EXC 171), and the Max Planck Society (H.G., F.B.).

Author information

Authors and Affiliations

Authors

Contributions

J.G., S.S., M.J. and M.G. performed biochemical studies; J.G. and M.G. analyzed biochemical data; N.C. supported MS-based product analysis; F.B. performed kinetic and atomistic modeling; J.G., F.B., H.G. and M.G. designed research; J.G., F.B., H.G. and M.G. wrote the manuscript.

Corresponding authors

Correspondence to Helmut Grubmüller or Martin Grininger.

Ethics declarations

Competing interests

J.G. and M.G. are inventors of EP patent applications 15 174 342.4 (filed on June 26th, 2015) and 15 162 192.7 (filed on April 1st, 2015) on FAS mutations for short FA production.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–3, Supplementary Figures 1–16 and Supplementary Notes 1–3. (PDF 8370 kb)

Supplementary Software

Modeling implementation for supplementary information. (TAR 10480 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gajewski, J., Buelens, F., Serdjukow, S. et al. Engineering fatty acid synthases for directed polyketide production. Nat Chem Biol 13, 363–365 (2017). https://doi.org/10.1038/nchembio.2314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2314

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research