Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes

Abstract

In this study, we demonstrate the feasibility of expanding the genetic code of Escherichia coli using its own tryptophanyl–tRNA synthetase and tRNA (TrpRS–tRNATrp) pair. This was made possible by first functionally replacing this endogenous pair with an E. coli–optimized counterpart from Saccharomyces cerevisiae, and then reintroducing the liberated E. coli TrpRS–tRNATrp pair into the resulting strain as a nonsense suppressor, which was then followed by its directed evolution to genetically encode several new unnatural amino acids (UAAs). These engineered TrpRS–tRNATrp variants were also able to drive efficient UAA mutagenesis in mammalian cells. Since bacteria-derived aminoacyl–tRNA synthetase (aaRS)–tRNA pairs are typically orthogonal in eukaryotes, our work provides a general strategy to develop additional aaRS–tRNA pairs that can be used for UAA mutagenesis of proteins expressed in both E. coli and eukaryotes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the strategy to create an aaRS–tRNA pair that can drive genetic code expansion in both eukaryotes and E. coli.
Figure 2: Establishing the EcTrpRS–tRNAEcTrp pair as an orthogonal nonsense suppressor in an engineered E. coli strain.
Figure 3: Evolution of EcTrpRS to develop mutants charging 5HTP (1) with high fidelity and efficiency.
Figure 4: Site-specific incorporation of tryptophan analogs into proteins expressed in both ATMW1 E. coli and mammalian cells using polyspecific EcTrpRS variants.
Figure 5: 5AzW and 5PrW residues facilitate site-selective bioconjugation to proteins.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Chin, J.W. Expanding and reprogramming the genetic code of cells and animals. Annu. Rev. Biochem. 83, 379–408 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Dumas, A., Lercher, L., Spicer, C.D. & Davis, B.G. Designing logical codon reassignment–expanding the chemistry in biology. Chem. Sci. 6, 50–69 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Liu, C.C. & Schultz, P.G. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79, 413–444 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, L., Brock, A., Herberich, B. & Schultz, P.G. Expanding the genetic code of Escherichia coli. Science 292, 498–500 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Chin, J.W. et al. An expanded eukaryotic genetic code. Science 301, 964–967 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Wan, W., Tharp, J.M. & Liu, W.R. Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. Biochim. Biophys. Acta 1844, 1059–1070 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anderson, J.C. et al. An expanded genetic code with a functional quadruplet codon. Proc. Natl. Acad. Sci. USA 101, 7566–7571 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chatterjee, A., Sun, S.B., Furman, J.L., Xiao, H. & Schultz, P.G. A versatile platform for single- and multiple-unnatural amino acid mutagenesis in Escherichia coli. Biochemistry 52, 1828–1837 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Neumann, H., Wang, K., Davis, L., Garcia-Alai, M. & Chin, J.W. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464, 441–444 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Wan, W. et al. A facile system for genetic incorporation of two different noncanonical amino acids into one protein in Escherichia coli. Angew. Chem. Int. Ed. Engl. 49, 3211–3214 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Xiao, H. et al. Genetic incorporation of multiple unnatural amino acids into proteins in mammalian cells. Angew. Chem. Int. Ed. Engl. 52, 14080–14083 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Iraha, F. et al. Functional replacement of the endogenous tyrosyl-tRNA synthetase-tRNATyr pair by the archaeal tyrosine pair in Escherichia coli for genetic code expansion. Nucleic Acids Res. 38, 3682–3691 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chatterjee, A., Xiao, H. & Schultz, P.G. Evolution of multiple, mutually orthogonal prolyl-tRNA synthetase/tRNA pairs for unnatural amino acid mutagenesis in Escherichia coli. Proc. Natl. Acad. Sci. USA 109, 14841–14846 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chatterjee, A., Xiao, H., Yang, P.Y., Soundararajan, G. & Schultz, P.G. A tryptophanyl-tRNA synthetase/tRNA pair for unnatural amino acid mutagenesis in E. coli. Angew. Chem. Int. Ed. Engl. 52, 5106–5109 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Ellefson, J.W. et al. Directed evolution of genetic parts and circuits by compartmentalized partnered replication. Nat. Biotechnol. 32, 97–101 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, H.H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Warming, S., Costantino, N., Court, D.L., Jenkins, N.A. & Copeland, N.G. Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res. 33, e36 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Soll, L. & Berg, P. Recessive lethal nonsense suppressor in Escherichia coli which inserts glutamine. Nature 223, 1340–1342 (1969).

    Article  CAS  PubMed  Google Scholar 

  19. Jahn, M., Rogers, M.J. & Söll, D. Anticodon and acceptor stem nucleotides in tRNA(Gln) are major recognition elements for E. coli glutaminyl-tRNA synthetase. Nature 352, 258–260 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Rogers, M.J., Adachi, T., Inokuchi, H. & Söll, D. Switching tRNA(Gln) identity from glutamine to tryptophan. Proc. Natl. Acad. Sci. USA 89, 3463–3467 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kopelowitz, J., Hampe, C., Goldman, R., Reches, M. & Engelberg-Kulka, H. Influence of codon context on UGA suppression and readthrough. J. Mol. Biol. 225, 261–269 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. O'Donoghue, P. et al. Near-cognate suppression of amber, opal and quadruplet codons competes with aminoacyl-tRNAPyl for genetic code expansion. FEBS Lett. 586, 3931–3937 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Santoro, S.W., Wang, L., Herberich, B., King, D.S. & Schultz, P.G. An efficient system for the evolution of aminoacyl-tRNA synthetase specificity. Nat. Biotechnol. 20, 1044–1048 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, Z. et al. Selective incorporation of 5-hydroxytryptophan into proteins in mammalian cells. Proc. Natl. Acad. Sci. USA 101, 8882–8887 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Antonczak, A.K. et al. Importance of single molecular determinants in the fidelity of expanded genetic codes. Proc. Natl. Acad. Sci. USA 108, 1320–1325 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cooley, R.B., Karplus, P.A. & Mehl, R.A. Gleaning unexpected fruits from hard-won synthetases: probing principles of permissivity in non-canonical amino acid-tRNA synthetases. ChemBioChem 15, 1810–1819 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Young, D.D. et al. An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity. Biochemistry 50, 1894–1900 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Prather, N.E., Murgola, E.J. & Mims, B.H. Primary structure of an unusual glycine tRNA UGA suppressor. Nucleic Acids Res. 9, 6421–6428 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Raftery, L.A., Egan, J.B., Cline, S.W. & Yarus, M. Defined set of cloned termination suppressors: in vivo activity of isogenetic UAG, UAA, and UGA suppressor tRNAs. J. Bacteriol. 158, 849–859 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chatterjee, A., Xiao, H., Bollong, M., Ai, H.W. & Schultz, P.G. Efficient viral delivery system for unnatural amino acid mutagenesis in mammalian cells. Proc. Natl. Acad. Sci. USA 110, 11803–11808 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guo, J., Melançon, C.E., III, Lee, H.S., Groff, D. & Schultz, P.G. Evolution of amber suppressor tRNAs for efficient bacterial production of proteins containing nonnatural amino acids. Angew. Chem. Int. Ed. Engl. 48, 9148–9151 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Melançon, C.E., III & Schultz, P.G. One plasmid selection system for the rapid evolution of aminoacyl-tRNA synthetases. Bioorg. Med. Chem. Lett. 19, 3845–3847 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Young, T.S., Ahmad, I., Yin, J.A. & Schultz, P.G. An enhanced system for unnatural amino acid mutagenesis in E. coli. J. Mol. Biol. 395, 361–374 (2010).

    CAS  PubMed  Google Scholar 

  34. Syn, C.K. & Swarup, S. A scalable protocol for the isolation of large-sized genomic DNA within an hour from several bacteria. Anal. Biochem. 278, 86–90 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Li, M. & Johnson, M.E. An efficient synthesis of 5-azidotryptophan. Tetrahedron Lett. 35, 6255–6258 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The EcNR1 strain was a kind gift from G.M. Church (Harvard). A.C. is thankful for support from the Richard and Susan Smith Family Foundation, Newton, MA.

Author information

Authors and Affiliations

Authors

Contributions

J.S.I. designed the experiments, performed strain development/characterization, cloning/mutagenesis, directed evolution, and protein expression, and wrote the manuscript; P.S.A. synthesized 5AzW and 5PrW; C.J.J.W. performed cloning/mutagenesis, directed evolution, and protein expression; L.A.C. performed the digestion/MS analysis of reporter proteins; M.J.L. assisted with the design of the recombination experiments; Y.Z. assisted with the protein expression in mammalian cells; A.C. conceived the idea, designed the experiments, and wrote the manuscript.

Corresponding author

Correspondence to Abhishek Chatterjee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–13 and Supplementary Tables 1–3. (PDF 2035 kb)

Supplementary Note 1

Synthesis of 5PrW and associated characterization data. (PDF 727 kb)

Supplementary Note 2

Sequences for plasmids and other gene cassettes. (PDF 1690 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Italia, J., Addy, P., Wrobel, C. et al. An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes. Nat Chem Biol 13, 446–450 (2017). https://doi.org/10.1038/nchembio.2312

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2312

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing