Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

L-2-Hydroxyglutarate production arises from noncanonical enzyme function at acidic pH

Abstract

The metabolite 2-hydroxyglutarate (2HG) can be produced as either a D- R- or L- S- enantiomer, each of which inhibits α-ketoglutarate (αKG)-dependent enzymes involved in diverse biologic processes. Oncogenic mutations in isocitrate dehydrogenase (IDH) produce D-2HG, which causes a pathologic blockade in cell differentiation. On the other hand, oxygen limitation leads to accumulation of L-2HG, which can facilitate physiologic adaptation to hypoxic stress in both normal and malignant cells. Here we demonstrate that purified lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) catalyze stereospecific production of L-2HG via 'promiscuous' reduction of the alternative substrate αKG. Acidic pH enhances production of L-2HG by promoting a protonated form of αKG that binds to a key residue in the substrate-binding pocket of LDHA. Acid-enhanced production of L-2HG leads to stabilization of hypoxia-inducible factor 1 alpha (HIF-1α) in normoxia. These findings offer insights into mechanisms whereby microenvironmental factors influence production of metabolites that alter cell fate and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LDH and MDH enzymes catalyze reduction of the alternative substrate αKG.
Figure 2: LDH and MDH selectively produce L-α-hydroxyacids, including L-2HG.
Figure 3: ACIDIC PH ENHANCES L-2HG production by LDH and MDH.
Figure 4: LDH exhibits pH-sensitive reduction of α-ketoacids with carboxylate tails.
Figure 5: Acidity-induced rate enhancement arises from preference of LDHA for the protonated form of αKG.
Figure 6: Acid-enhanced production of L-2HG stabilizes HIF-1α.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Losman, J.A. & Kaelin, W.G. Jr. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev. 27, 836–852 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Pavlova, N.N. & Thompson, C.B. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27–47 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ward, P.S. et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17, 225–234 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Figueroa, M.E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lu, C. et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483, 474–478 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sasaki, M. et al. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 488, 656–659 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kats, L.M. et al. Proto-oncogenic role of mutant IDH2 in leukemia initiation and maintenance. Cell Stem Cell 14, 329–341 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Saha, S.K. et al. Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer. Nature 513, 110–114 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Linster, C.L., Van Schaftingen, E. & Hanson, A.D. Metabolite damage and its repair or pre-emption. Nat. Chem. Biol. 9, 72–80 (2013).

    CAS  PubMed  Google Scholar 

  11. Chowdhury, R. et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep. 12, 463–469 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Koivunen, P. et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483, 484–488 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Haliloglu, G. et al. L-2-hydroxyglutaric aciduria and brain tumors in children with mutations in the L2HGDH gene: neuroimaging findings. Neuropediatrics 39, 119–122 (2008).

    CAS  PubMed  Google Scholar 

  15. Shim, E.H. et al. L-2-Hydroxyglutarate: an epigenetic modifier and putative oncometabolite in renal cancer. Cancer Discov. 4, 1290–1298 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rzem, R. et al. A mouse model of L-2-hydroxyglutaric aciduria, a disorder of metabolite repair. PLoS One 10, e0119540 (2015).

    PubMed  PubMed Central  Google Scholar 

  17. Intlekofer, A.M. et al. Hypoxia induces production of L-2-hydroxyglutarate. Cell Metab. 22, 304–311 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Oldham, W.M., Clish, C.B., Yang, Y. & Loscalzo, J. Hypoxia-mediated increases in L-2-hydroxyglutarate coordinate the metabolic response to reductive stress. Cell Metab. 22, 291–303 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, C. et al. Cancer-associated IDH2 mutants drive an acute myeloid leukemia that is susceptible to Brd4 inhibition. Genes Dev. 27, 1974–1985 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Simon, M.C. & Keith, B. The role of oxygen availability in embryonic development and stem cell function. Nat. Rev. Mol. Cell Biol. 9, 285–296 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rzem, R., Vincent, M.F., Van Schaftingen, E. & Veiga-da-Cunha, M. L-2-Hydroxyglutaric aciduria, a defect of metabolite repair. J. Inherit. Metab. Dis. 30, 681–689 (2007).

    CAS  PubMed  Google Scholar 

  22. Garofalo, O., Cox, D.W. & Bachelard, H.S. Brain levels of NADH and NAD+ under hypoxic and hypoglycaemic conditions in vitro. J. Neurochem. 51, 172–176 (1988).

    CAS  PubMed  Google Scholar 

  23. Wise, D.R. et al. Hypoxia promotes isocitrate dehydrogenase–dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. USA 108, 19611–19616 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bright, C.M. & Ellis, D. Intracellular pH changes induced by hypoxia and anoxia in isolated sheep heart Purkinje fibres. Exp. Physiol. 77, 165–175 (1992).

    CAS  PubMed  Google Scholar 

  25. Yan, G.X. & Kléber, A.G. Changes in extracellular and intracellular pH in ischemic rabbit papillary muscle. Circ. Res. 71, 460–470 (1992).

    CAS  PubMed  Google Scholar 

  26. Meister, A. Reduction of αγ-diketo and α-keto acids catalyzed by muscle preparations and by crystalline lactic dehydrogenase. J. Biol. Chem. 184, 117–129 (1950).

    CAS  PubMed  Google Scholar 

  27. Schatz, L. & Segal, H.L. Reduction of α-ketoglutarate by homogeneous lactic dehydrogenase X of testicular tissue. J. Biol. Chem. 244, 4393–4397 (1969).

    CAS  PubMed  Google Scholar 

  28. Struys, E.A., Jansen, E.E., Verhoeven, N.M. & Jakobs, C. Measurement of urinary D- and L-2-hydroxyglutarate enantiomers by stable-isotope-dilution liquid chromatography–tandem mass spectrometry after derivatization with diacetyl-L-tartaric anhydride. Clin. Chem. 50, 1391–1395 (2004).

    CAS  PubMed  Google Scholar 

  29. Pietrak, B. et al. A tale of two subunits: how the neomorphic R132H IDH1 mutation enhances production of αHG. Biochemistry 50, 4804–4812 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Rendina, A.R. et al. Mutant IDH1 enhances the production of 2-hydroxyglutarate due to its kinetic mechanism. Biochemistry 52, 4563–4577 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Leonardi, R., Subramanian, C., Jackowski, S. & Rock, C.O. Cancer-associated isocitrate dehydrogenase mutations inactivate NADPH-dependent reductive carboxylation. J. Biol. Chem. 287, 14615–14620 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fan, J. et al. Human phosphoglycerate dehydrogenase produces the oncometabolite D-2-hydroxyglutarate. ACS Chem. Biol. 10, 510–516 (2015).

    CAS  PubMed  Google Scholar 

  33. Mattaini, K.R. et al. An epitope tag alters phosphoglycerate dehydrogenase structure and impairs ability to support cell proliferation. Cancer Metab. 3, 5 (2015).

    PubMed  PubMed Central  Google Scholar 

  34. Locasale, J.W. et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43, 869–874 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346–350 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Terunuma, A. et al. MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J. Clin. Invest. 124, 398–412 (2014).

    CAS  PubMed  Google Scholar 

  37. Zhu, A., Romero, R. & Petty, H.R. A sensitive fluorimetric assay for pyruvate. Anal. Biochem. 396, 146–151 (2010).

    CAS  PubMed  Google Scholar 

  38. Vesell, E.S. pH dependence of lactate dehydrogenase isozyme inhibition by substrate. Nature 210, 421–422 (1966).

    CAS  PubMed  Google Scholar 

  39. Wilks, H.M. et al. A specific, highly active malate dehydrogenase by redesign of a lactate dehydrogenase framework. Science 242, 1541–1544 (1988).

    CAS  PubMed  Google Scholar 

  40. Dunn, C.R. et al. Design and synthesis of new enzymes based on the lactate dehydrogenase framework. Phil. Trans. R. Soc. Lond. B 332, 177–184 (1991).

    CAS  Google Scholar 

  41. Tokonami, N. et al. α-Ketoglutarate regulates acid–base balance through an intrarenal paracrine mechanism. J. Clin. Invest. 123, 3166–3171 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Novoa, W.B., Winer, A.D., Glaid, A.J. & Schwert, G.W. Lactic dehydrogenase. V. Inhibition by oxamate and by oxalate. J. Biol. Chem. 234, 1143–1148 (1959).

    CAS  PubMed  Google Scholar 

  43. Schofield, C.J. & Ratcliffe, P.J. Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol. 5, 343–354 (2004).

    CAS  PubMed  Google Scholar 

  44. Finley, L.W. et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell 19, 416–428 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Metallo, C.M. et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380–384 (2011).

    PubMed  PubMed Central  Google Scholar 

  46. Mullen, A.R. et al. Oxidation of α-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects. Cell Rep. 7, 1679–1690 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao, S. et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1α. Science 324, 261–265 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tarhonskaya, H. et al. Non-enzymatic chemistry enables 2-hydroxyglutarate-mediated activation of 2-oxoglutarate oxygenases. Nat. Commun. 5, 3423 (2014).

    PubMed  Google Scholar 

  49. Chiche, J. et al. Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res. 69, 358–368 (2009).

    CAS  PubMed  Google Scholar 

  50. Mekhail, K., Gunaratnam, L., Bonicalzi, M.E. & Lee, S. HIF activation by pH-dependent nucleolar sequestration of VHL. Nat. Cell Biol. 6, 642–647 (2004).

    CAS  PubMed  Google Scholar 

  51. Wise, D.R. et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl. Acad. Sci. USA 105, 18782–18787 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Shelley, J.C. et al. Epik: a software program for pKa prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des. 21, 681–691 (2007).

    CAS  PubMed  Google Scholar 

  53. Friesner, R.A. et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47, 1739–1749 (2004).

    CAS  PubMed  Google Scholar 

  54. Halgren, T.A. et al. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 47, 1750–1759 (2004).

    CAS  PubMed  Google Scholar 

  55. Kolappan, S. et al. Structures of lactate dehydrogenase A (LDHA) in apo, ternary and inhibitor-bound forms. Acta Crystallogr. D Biol. Crystallogr. 71, 185–195 (2015).

    CAS  PubMed  Google Scholar 

  56. Song, Y., Mao, J. & Gunner, M.R. MCCE2: improving protein pKa calculations with extensive side chain rotamer sampling. J. Comput. Chem. 30, 2231–2247 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Read, J.A., Winter, V.J., Eszes, C.M., Sessions, R.B. & Brady, R.L. Structural basis for altered activity of M- and H-isozyme forms of human lactate dehydrogenase. Proteins 43, 175–185 (2001).

    CAS  PubMed  Google Scholar 

  58. Yang, A.S., Gunner, M.R., Sampogna, R., Sharp, K. & Honig, B. On the calculation of pKas in proteins. Proteins 15, 252–265 (1993).

    CAS  PubMed  Google Scholar 

  59. Cornell, W.D. et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995).

    CAS  Google Scholar 

  60. Jakalian, A., Bush, B.L., Jack, D.B. & Bayly, C.I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J. Comput. Chem. 21, 132–146 (2000).

    CAS  Google Scholar 

  61. Jakalian, A., Jack, D.B. & Bayly, C.I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J. Comput. Chem. 23, 1623–1641 (2002).

    CAS  PubMed  Google Scholar 

  62. Levitt, M. & Lifson, S. Refinement of protein conformations using a macromolecular energy minimization procedure. J. Mol. Biol. 46, 269–279 (1969).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Thompson laboratory for helpful discussions. We thank M. Isik, S. Hanson, and A. Rizzi from the Chodera laboratory for assistance. A.M.I. was supported by the NIH/NCI (K08 CA201483-01A1), the Leukemia & Lymphoma Society (Special Fellow Award 3356-16), the Burroughs Wellcome Fund (Career Award for Medical Scientists 1015584), the Conquer Cancer Foundation of ASCO, the Susan and Peter Solomon Divisional Genomics Program, and the Steven A. Greenberg Fund. The work was also supported, in part, by the Leukemia & Lymphoma Society Specialized Center of Research Program (7011-16), the Starr Cancer Consortium (I6-A616), and grants from the NIH, including R01 CA168802-02 and R01 CA177828-02 (C.B.T.), K99 CA191021-01A1 (C.C.-F.), and the Memorial Sloan Kettering Cancer Center Support Grant (NIH P30 CA008748). M.R.G. and S.S. received financial support from the National Science Foundation (MCB 1022208) and infrastructure support from the National Institute on Minority Health and Health Disparities (8G12MD007603-29).

Author information

Authors and Affiliations

Authors

Contributions

A.M.I. and C.B.T. conceived the project, designed the experiments, analyzed the data, and wrote the manuscript. A.M.I. and B.W. performed all of the experiments. H.L., H.S., and J.R.C. assisted with liquid chromatography–mass spectrometry. C.C.-F. assisted with intracellular pH measurement. A.S.R., S.S., M.R.G., and J.D.C. performed the computational modeling. All authors read and approved the manuscript.

Corresponding author

Correspondence to Craig B Thompson.

Ethics declarations

Competing interests

C.B.T. is a founder of Agios Pharmaceuticals and is a member of its scientific advisory board. He also serves on the board of directors of Merck and Charles River Laboratories. J.D.C. is a member of the scientific advisory board for Schrödinger, LLC.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–13 (PDF 924 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Intlekofer, A., Wang, B., Liu, H. et al. L-2-Hydroxyglutarate production arises from noncanonical enzyme function at acidic pH. Nat Chem Biol 13, 494–500 (2017). https://doi.org/10.1038/nchembio.2307

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2307

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer