Expanding the product portfolio of fungal type I fatty acid synthases


Fungal type I fatty acid synthases (FASs) are mega-enzymes with two separated, identical compartments, in which the acyl carrier protein (ACP) domains shuttle substrates to catalytically active sites embedded in the chamber wall. We devised synthetic FASs by integrating heterologous enzymes into the reaction chambers and demonstrated their capability to convert acyl-ACP or acyl-CoA from canonical fatty acid biosynthesis to short/medium-chain fatty acids and methyl ketones.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Design and strategy for engineering fungal fatty acid synthases (FASs) to synthesize tailored oleochemicals.
Figure 2: Synthesis of oleochemicals by engineered fungal FASs.

Accession codes


Protein Data Bank


  1. 1

    Jenni, S. et al. Science 316, 254–261 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Lomakin, I.B., Xiong, Y. & Steitz, T.A. Cell 129, 319–332 (2007).

    Article  Google Scholar 

  3. 3

    Zhu, Z. et al. Nat. Commun. 3, 1112 (2012).

    Article  Google Scholar 

  4. 4

    Fischer, M. et al. Protein Sci. 24, 987–995 (2015).

    CAS  Article  Google Scholar 

  5. 5

    Zhu, Z., Zhang, S., Lin, X., Liu, W. & Zhao, Z.K. Chin. J. Biotechnol. 30, 1414–1423 (2014).

    CAS  Google Scholar 

  6. 6

    Zheng, Y. et al. Biotechnol. Biofuels 5, 76 (2012).

    CAS  Article  Google Scholar 

  7. 7

    Gajewski, J. et al. Nat. Chem. Biol. 13 10.1038/nchembio.2314 (2017).

  8. 8

    Leber, C., Choi, J.W., Polson, B. & Da Silva, N.A. Biotechnol. Bioeng. 113, 895–900 (2016).

    CAS  Article  Google Scholar 

  9. 9

    Yu, G. et al. Plant Physiol. 154, 67–77 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Schweizer, E. & Hofmann, J. Microbiol. Mol. Biol. Rev. 68, 501–517 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Aprahamian, S.A., Arslanian, M.J. & Wakil, S.J. Comp. Biochem. Physiol. B. 71, 577–582 (1982).

    CAS  Article  Google Scholar 

  12. 12

    Johansson, P. et al. Proc. Natl. Acad. Sci. USA 105, 12803–12808 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Maier, T., Leibundgut, M., Boehringer, D. & Ban, N. Q. Rev. Biophys. 43, 373–422 (2010).

    CAS  Article  Google Scholar 

  14. 14

    Leber, C. & Da Silva, N.A. Biotechnol. Bioeng. 111, 347–358 (2014).

    CAS  Article  Google Scholar 

  15. 15

    Zhou, Y.J. et al. Nat. Commun. 7, 11709 (2016).

    CAS  Article  Google Scholar 

  16. 16

    Sambrook, J. & Russell, D.W. Molecular Cloning: a Laboratory Manual 3rd edn. (Cold Spring Harbor Laboratory Press, 2001).

  17. 17

    van den Ent, F. & Löwe, J. J. Biochem. Biophys. Methods 67, 67–74 (2006).

    CAS  Article  Google Scholar 

  18. 18

    Shao, Z., Zhao, H. & Zhao, H. Nucleic Acids Res. 37, e16 (2009).

    Article  Google Scholar 

  19. 19

    Zhou, Y.J. et al. J. Am. Chem. Soc. 134, 3234–3241 (2012).

    CAS  Article  Google Scholar 

  20. 20

    Wenz, P., Schwank, S., Hoja, U. & Schüller, H.-J. Nucleic Acids Res. 29, 4625–4632 (2001).

    CAS  Article  Google Scholar 

  21. 21

    Wang, J., Zhang, S., Tan, H. & Zhao, Z.K. J. Microbiol. Methods 71, 225–230 (2007).

    CAS  Article  Google Scholar 

  22. 22

    Schägger, H. Nat. Protoc. 1, 16–22 (2006).

    Article  Google Scholar 

  23. 23

    Reid, R.J.D., Sunjevaric, I., Keddache, M. & Rothstein, R. Yeast 19, 319–328 (2002).

    CAS  Article  Google Scholar 

  24. 24

    Gueldener, U., Heinisch, J., Koehler, G.J., Voss, D. & Hegemann, J.H. Nucleic Acids Res. 30, e23 (2002).

    CAS  Article  Google Scholar 

  25. 25

    Jensen, N.B. et al. FEMS Yeast Res. 14, 238–248 (2014).

    CAS  Article  Google Scholar 

  26. 26

    Mitchell, J., Smith, D.M. & Bryant, W.M.D. J. Am. Chem. Soc. 62, 4–6 (1940).

    CAS  Article  Google Scholar 

  27. 27

    Khoomrung, S., Chumnanpuen, P., Jansa-ard, S., Nookaew, I. & Nielsen, J. Appl. Microbiol. Biotechnol. 94, 1637–1646 (2012).

    CAS  Article  Google Scholar 

Download references


This work was funded by grants from Total New Energies, the Novo Nordisk Foundation, and the Knut and Alice Wallenberg Foundation to J.N. and from the National Natural Science Foundation of China to Z.K.Z. (No. 21325627). We thank H.-J. Schüller (Ernst-Moritz-Arndt-Universität Greifswald, Germany) for sharing the PWY12 strain; J.L. Collier (Stony Brook University, USA) for providing genomic DNA of A. kerguelense; C. Song and J. Li (Dalian Institute of Chemical Physics), respectively, for the MALDI–TOF Mass Spectrometry analysis and ultracentrifugation; and S. Khoomrung and the Chalmers Mass Spectrometry Infrastructure (J. Karlsson and J. Kindbom) for assistance with GC–MS analysis. We also appreciate the help from and/or discussion with S. Zhang, W. Liu, X. Lin, V. Siewers, Y. Chen, M. Fischer, Z. Dai, N.A. Buijs, P. Teixeira and O. Vidalin.

Author information




Z.Z., Z.K.Z. and J.N. conceived this study. Z.Z. designed and performed most of the experiments and analyzed the data. Z.Z. and Z.K.Z. performed biochemical study of Rhodosporidium fatty acid synthase (FAS) at Dalian Institute of Chemical Physics. Y.J.Z. participated in the plasmid construction and product quantification. A.K. assisted with data analysis and interpretation. M.G. developed the ketoacyl synthase (KS) mutation. Z.Z. and J.N. wrote the manuscript. All authors revised and approved the manuscript.

Corresponding authors

Correspondence to Zongbao K Zhao or Jens Nielsen.

Ethics declarations

Competing interests

Z.Z., A.K. and J.N. are listed as co-inventors on a patent application related to fatty acid production. J.N. and A.K. are shareholders in Biopetrolia AB.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–7 and Supplementary Figures 1–9. (PDF 7299 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Zhou, Y., Krivoruchko, A. et al. Expanding the product portfolio of fungal type I fatty acid synthases. Nat Chem Biol 13, 360–362 (2017). https://doi.org/10.1038/nchembio.2301

Download citation

Further reading