Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

You are viewing this page in draft mode.

Evolution of a split RNA polymerase as a versatile biosensor platform

Abstract

Biosensors that transduce target chemical and biochemical inputs into genetic outputs are essential for bioengineering and synthetic biology. Current biosensor design strategies are often limited by a low signal-to-noise ratio, the extensive optimization required for each new input, and poor performance in mammalian cells. Here we report the development of a proximity-dependent split RNA polymerase (RNAP) as a general platform for biosensor engineering. After discovering that interactions between fused proteins modulate the assembly of a split T7 RNAP, we optimized the split RNAP components for protein–protein interaction detection by phage-assisted continuous evolution (PACE). We then applied the resulting activity-responsive RNAP (AR) system to create biosensors that can be activated by light and small molecules, demonstrating the 'plug-and-play' nature of the platform. Finally, we validated that ARs can interrogate multidimensional protein–protein interactions and trigger RNA nanostructure production, protein synthesis, and gene knockdown in mammalian systems, illustrating the versatility of ARs in synthetic biology applications.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Design and biophysical feasibility of ARs based on proximity-dependent split RNAPs.
Figure 2: Evolution of a proximity-dependent split RNAP for PPI detection.
Figure 3: Small-molecule- and light-responsive ARs.
Figure 4: Multidimensional PPI detection by ARs.
Figure 5: ARs can trigger a variety of outputs in mammalian cells.

Accession codes

Accessions

Protein Data Bank

References

  1. 1

    Ruder, W.C., Lu, T. & Collins, J.J. Synthetic biology moving into the clinic. Science 333, 1248–1252 (2011).

    CAS  Article  Google Scholar 

  2. 2

    Lienert, F., Lohmueller, J.J., Garg, A. & Silver, P.A. Synthetic biology in mammalian cells: next generation research tools and therapeutics. Nat. Rev. Mol. Cell Biol. 15, 95–107 (2014).

    CAS  Article  Google Scholar 

  3. 3

    Packer, M.S. & Liu, D.R. Methods for the directed evolution of proteins. Nat. Rev. Genet. 16, 379–394 (2015).

    CAS  Article  Google Scholar 

  4. 4

    Zhang, J., Jensen, M.K. & Keasling, J.D. Development of biosensors and their application in metabolic engineering. Curr. Opin. Chem. Biol. 28, 1–8 (2015).

    Article  Google Scholar 

  5. 5

    Benenson, Y. RNA-based computation in live cells. Curr. Opin. Biotechnol. 20, 471–478 (2009).

    CAS  Article  Google Scholar 

  6. 6

    Green, A.A., Silver, P.A., Collins, J.J. & Yin, P. Toehold switches: de-novo-designed regulators of gene expression. Cell 159, 925–939 (2014).

    CAS  Article  Google Scholar 

  7. 7

    Brophy, J.A. & Voigt, C.A. Principles of genetic circuit design. Nat. Methods 11, 508–520 (2014).

    CAS  Article  Google Scholar 

  8. 8

    Copeland, M.F., Politz, M.C., Johnson, C.B., Markley, A.L. & Pfleger, B.F. A transcription activator-like effector (TALE) induction system mediated by proteolysis. Nat. Chem. Biol. 12, 254–260 (2016).

    CAS  Article  Google Scholar 

  9. 9

    Putz, U., Skehel, P. & Kuhl, D. A tri-hybrid system for the analysis and detection of RNA--protein interactions. Nucleic Acids Res. 24, 4838–4840 (1996).

    CAS  Article  Google Scholar 

  10. 10

    Fields, S. & Song, O. A novel genetic system to detect protein-protein interactions. Nature 340, 245–246 (1989).

    CAS  Article  Google Scholar 

  11. 11

    SenGupta, D.J. et al. A three-hybrid system to detect RNA-protein interactions in vivo. Proc. Natl. Acad. Sci. USA 93, 8496–8501 (1996).

    CAS  Article  Google Scholar 

  12. 12

    Baker, K. et al. Chemical complementation: a reaction-independent genetic assay for enzyme catalysis. Proc. Natl. Acad. Sci. USA 99, 16537–16542 (2002).

    CAS  Article  Google Scholar 

  13. 13

    Konermann, S. et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500, 472–476 (2013).

    CAS  Article  Google Scholar 

  14. 14

    Polstein, L.R. & Gersbach, C.A. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat. Chem. Biol. 11, 198–200 (2015).

    CAS  Article  Google Scholar 

  15. 15

    Nuñez, J.K., Harrington, L.B. & Doudna, J.A. Chemical and biophysical modulation of Cas9 for tunable genome engineering. ACS Chem. Biol. 11, 681–688 (2016).

    Article  Google Scholar 

  16. 16

    Martin, F. Fifteen years of the yeast three-hybrid system: RNA-protein interactions under investigation. Methods 58, 367–375 (2012).

    CAS  Article  Google Scholar 

  17. 17

    Church, G.M., Elowitz, M.B., Smolke, C.D., Voigt, C.A. & Weiss, R. Realizing the potential of synthetic biology. Nat. Rev. Mol. Cell Biol. 15, 289–294 (2014).

    CAS  Article  Google Scholar 

  18. 18

    Yen, L. et al. Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature 431, 471–476 (2004).

    CAS  Article  Google Scholar 

  19. 19

    Winkler, W.C. & Breaker, R.R. Regulation of bacterial gene expression by riboswitches. Annu. Rev. Microbiol. 59, 487–517 (2005).

    CAS  Article  Google Scholar 

  20. 20

    Culler, S.J., Hoff, K.G. & Smolke, C.D. Reprogramming cellular behavior with RNA controllers responsive to endogenous proteins. Science 330, 1251–1255 (2010).

    CAS  Article  Google Scholar 

  21. 21

    Feng, J. et al. A general strategy to construct small molecule biosensors in eukaryotes. eLife 4, e10606 (2015).

    Article  Google Scholar 

  22. 22

    Lee, J.H. et al. Highly multiplexed subcellular RNA sequencing in situ. Science 343, 1360–1363 (2014).

    CAS  Article  Google Scholar 

  23. 23

    Zamft, B.M. et al. Measuring cation dependent DNA polymerase fidelity landscapes by deep sequencing. PLoS One 7, e43876 (2012).

    CAS  Article  Google Scholar 

  24. 24

    Pu, J., Chronis, I., Ahn, D. & Dickinson, B.C. A panel of protease-responsive RNA polymerases respond to biochemical signals by production of defined RNA outputs in live cells. J. Am. Chem. Soc. 137, 15996–15999 (2015).

    CAS  Article  Google Scholar 

  25. 25

    Segall-Shapiro, T.H., Meyer, A.J., Ellington, A.D., Sontag, E.D. & Voigt, C.A.A. A 'resource allocator' for transcription based on a highly fragmented T7 RNA polymerase. Mol. Syst. Biol. 10, 742 (2014).

    Article  Google Scholar 

  26. 26

    Shis, D.L. & Bennett, M.R. Library of synthetic transcriptional AND gates built with split T7 RNA polymerase mutants. Proc. Natl. Acad. Sci. USA 110, 5028–5033 (2013).

    CAS  Article  Google Scholar 

  27. 27

    Shekhawat, S.S. & Ghosh, I. Split-protein systems: beyond binary protein-protein interactions. Curr. Opin. Chem. Biol. 15, 789–797 (2011).

    CAS  Article  Google Scholar 

  28. 28

    Kerppola, T.K. Visualization of molecular interactions using bimolecular fluorescence complementation analysis: characteristics of protein fragment complementation. Chem. Soc. Rev. 38, 2876–2886 (2009).

    CAS  Article  Google Scholar 

  29. 29

    Hu, C.D. & Kerppola, T.K. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat. Biotechnol. 21, 539–545 (2003).

    CAS  Article  Google Scholar 

  30. 30

    Dickinson, B.C., Leconte, A.M., Allen, B., Esvelt, K.M. & Liu, D.R. Experimental interrogation of the path dependence and stochasticity of protein evolution using phage-assisted continuous evolution. Proc. Natl. Acad. Sci. USA 110, 9007–9012 (2013).

    CAS  Article  Google Scholar 

  31. 31

    Ellefson, J.W. et al. Directed evolution of genetic parts and circuits by compartmentalized partnered replication. Nat. Biotechnol. 32, 97–101 (2014).

    CAS  Article  Google Scholar 

  32. 32

    Ghosh, I., Hamilton, A.D. & Regan, L. Antiparallel leucine zipper-directed protein reassembly: application to the green fluorescent protein. J. Am. Chem. Soc. 122, 5658–5659 (2000).

    CAS  Article  Google Scholar 

  33. 33

    Magliery, T.J. et al. Detecting protein-protein interactions with a green fluorescent protein fragment reassembly trap: scope and mechanism. J. Am. Chem. Soc. 127, 146–157 (2005).

    CAS  Article  Google Scholar 

  34. 34

    Steitz, T.A. The structural changes of T7 RNA polymerase from transcription initiation to elongation. Curr. Opin. Struct. Biol. 19, 683–690 (2009).

    CAS  Article  Google Scholar 

  35. 35

    Esvelt, K.M., Carlson, J.C. & Liu, D.R. A system for the continuous directed evolution of biomolecules. Nature 472, 499–503 (2011).

    CAS  Article  Google Scholar 

  36. 36

    Badran, A.H. et al. Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature 533, 58–63 (2016).

    CAS  Article  Google Scholar 

  37. 37

    Carlson, J.C., Badran, A.H., Guggiana-Nilo, D.A. & Liu, D.R. Negative selection and stringency modulation in phage-assisted continuous evolution. Nat. Chem. Biol. 10, 216–222 (2014).

    CAS  Article  Google Scholar 

  38. 38

    Dickinson, B.C., Packer, M.S., Badran, A.H. & Liu, D.R. A system for the continuous directed evolution of proteases rapidly reveals drug-resistance mutations. Nat. Commun. 5, 5352 (2014).

    CAS  Article  Google Scholar 

  39. 39

    Hubbard, B.P. et al. Continuous directed evolution of DNA-binding proteins to improve TALEN specificity. Nat. Methods 12, 939–942 (2015).

    CAS  Article  Google Scholar 

  40. 40

    Leconte, A.M. et al. A population-based experimental model for protein evolution: effects of mutation rate and selection stringency on evolutionary outcomes. Biochemistry 52, 1490–1499 (2013).

    CAS  Article  Google Scholar 

  41. 41

    Cheetham, G.M. & Steitz, T.A. Structure of a transcribing T7 RNA polymerase initiation complex. Science 286, 2305–2309 (1999).

    CAS  Article  Google Scholar 

  42. 42

    Tahirov, T.H. et al. Structure of a T7 RNA polymerase elongation complex at 2.9 A resolution. Nature 420, 43–50 (2002).

    CAS  Article  Google Scholar 

  43. 43

    Guntas, G. et al. Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. Proc. Natl. Acad. Sci. USA 112, 112–117 (2015).

    CAS  Article  Google Scholar 

  44. 44

    Rivera, V.M. et al. A humanized system for pharmacologic control of gene expression. Nat. Med. 2, 1028–1032 (1996).

    CAS  Article  Google Scholar 

  45. 45

    Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551 (1992).

    CAS  Article  Google Scholar 

  46. 46

    Paulmurugan, R. et al. A novel estrogen receptor intramolecular folding-based titratable transgene expression system. Mol. Ther. 17, 1703–1711 (2009).

    CAS  Article  Google Scholar 

  47. 47

    Blakeley, B.D., Chapman, A.M. & McNaughton, B.R. Split-superpositive GFP reassembly is a fast, efficient, and robust method for detecting protein-protein interactions in vivo. Mol. Biosyst. 8, 2036–2040 (2012).

    CAS  Article  Google Scholar 

  48. 48

    Kerppola, T.K. Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu. Rev. Biophys. 37, 465–487 (2008).

    CAS  Article  Google Scholar 

  49. 49

    Filonov, G.S., Kam, C.W., Song, W. & Jaffrey, S.R. In-gel imaging of RNA processing using broccoli reveals optimal aptamer expression strategies. Chem. Biol. 22, 649–660 (2015).

    CAS  Article  Google Scholar 

  50. 50

    Ringquist, S. et al. Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Mol. Microbiol. 6, 1219–1229 (1992).

    CAS  Article  Google Scholar 

  51. 51

    Gibson, D.G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank I. Chronis (University of Chicago), Y. Koh (University of Chicago), and D. Ahn (University of Chicago) for technical assistance, and D. Liu (Harvard University), B. McNaughton (Colorado State University), A. Deiters (University of Pittsburgh), B. Glick (University of Chicago), M. Glotzer (University of Chicago), Y. Krishnan (University of Chicago), J. Thornton (University of Chicago), and Y. Weizmann (University of Chicago) for supplying equipment and materials. This work was supported by the University of Chicago, the Cancer Research Foundation, the National Institute of General Medical Sciences of the National Institutes of Health (R35 GM119840) to B.C.D., the University of Chicago Medicine Comprehensive Cancer Center (P30 CA14599), and the National Center for Advancing Translational Sciences of the National Institutes of Health (UL1 TR000430). J.Z.-B. was supported by a Chemical Biology Training Grant from the US National Institutes of Health (T32GM008720).

Author information

Affiliations

Authors

Contributions

J.Z.-B., J.P., and B.C.D. cloned and validated all materials and performed transcription assays. J.P. and B.C.D. performed PACE experiments. J.Z.-B. and J.P. performed cell culture experiments. J.Z.-B., J.P., and B.C.D. designed experimental strategies and wrote the paper.

Corresponding author

Correspondence to Bryan C Dickinson.

Ethics declarations

Competing interests

The authors have filed a provisional patent application on the AR system.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–3 and Supplementary Figures 1–6. (PDF 4992 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pu, J., Zinkus-Boltz, J. & Dickinson, B. Evolution of a split RNA polymerase as a versatile biosensor platform. Nat Chem Biol 13, 432–438 (2017). https://doi.org/10.1038/nchembio.2299

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing