Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The pharmacological regulation of cellular mitophagy

Abstract

Small molecules are pharmacological tools of considerable value for dissecting complex biological processes and identifying potential therapeutic interventions. Recently, the cellular quality-control process of mitophagy has attracted considerable research interest; however, the limited availability of suitable chemical probes has restricted our understanding of the molecular mechanisms involved. Current approaches to initiate mitophagy include acute dissipation of the mitochondrial membrane potential (ΔΨm) by mitochondrial uncouplers (for example, FCCP/CCCP) and the use of antimycin A and oligomycin to impair respiration. Both approaches impair mitochondrial homeostasis and therefore limit the scope for dissection of subtle, bioenergy-related regulatory phenomena. Recently, novel mitophagy activators acting independently of the respiration collapse have been reported, offering new opportunities to understand the process and potential for therapeutic exploitation. We have summarized the current status of mitophagy modulators and analyzed the available chemical tools, commenting on their advantages, limitations and current applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PINK1–parkin-mediated mitophagy.
Figure 2: PINK1–parkin-independent mechanisms of mitophagy.
Figure 3: Activation of Ub-dependent mitophagy by modulators of the PINK1–parkin pathway.
Figure 4: The model of mitophagy induction via PMI, SIRT1 activators and iron chelators.
Figure 5: Chemical approaches to inhibit the Keap1-mediated degradation of Nrf2.

Similar content being viewed by others

References

  1. Kim, I., Rodriguez-Enriquez, S. & Lemasters, J.J. Selective degradation of mitochondria by mitophagy. Arch. Biochem. Biophys. 462, 245–253 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Redmann, M., Dodson, M., Boyer-Guittaut, M., Darley-Usmar, V. & Zhang, J. Mitophagy mechanisms and role in human diseases. Int. J. Biochem. Cell Biol. 53, 127–133 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Khaminets, A., Behl, C. & Dikic, I. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol. 26, 6–16 (2016). A comprehensive review article discussing the molecular pathways of mitophagy and their dependency on Ub signaling.

    CAS  PubMed  Google Scholar 

  4. Narendra, D.P. et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8, e1000298 (2010).

    PubMed  PubMed Central  Google Scholar 

  5. Kazlauskaite, A. et al. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem. J. 460, 127–139 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309–314 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Orvedahl, A. et al. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 480, 113–117 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fu, M. et al. Regulation of mitophagy by the Gp78 E3 ubiquitin ligase. Mol. Biol. Cell 24, 1153–1162 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rikka, S. et al. Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover. Cell Death Differ. 18, 721–731 (2011).

    CAS  PubMed  Google Scholar 

  10. Novak, I. et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11, 45–51 (2010).

    CAS  PubMed  Google Scholar 

  11. Liu, L. et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14, 177–185 (2012).

    PubMed  Google Scholar 

  12. Sandoval, H. et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature 454, 232–235 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gao, F. et al. The mitochondrial protein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway. Hum. Mol. Genet. 24, 2528–2538 (2015).

    CAS  PubMed  Google Scholar 

  14. Zhang, H. et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem. 283, 10892–10903 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bellot, G. et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol. Cell. Biol. 29, 2570–2581 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wei, H., Liu, L. & Chen, Q. Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses. Biochim. Biophys. Acta. 1853 10 Pt B, 2784–2790 (2015).

    CAS  PubMed  Google Scholar 

  17. Chen, G. et al. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol. Cell 54, 362–377 (2014). A report showing that the activity of FUNDC1 is regulated by post-translational modifications. The identification and characterization of a peptide inhibitor of FUNDC1-mediated mitophagy is also reported.

    CAS  PubMed  Google Scholar 

  18. Liberman, E.A., Topaly, V.P., Tsofina, L.M., Jasaitis, A.A. & Skulachev, V.P. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature 222, 1076–1078 (1969).

    CAS  PubMed  Google Scholar 

  19. Narendra, D., Kane, L.A., Hauser, D.N., Fearnley, I.M. & Youle, R.J. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6, 1090–1106 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Narendra, D., Tanaka, A., Suen, D.-F. & Youle, R.J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gatliff, J. et al. TSPO interacts with VDAC1 and triggers a ROS-mediated inhibition of mitochondrial quality control. Autophagy 10, 2279–2296 (2014).

    CAS  PubMed  Google Scholar 

  22. Wang, Y., Nartiss, Y., Steipe, B., McQuibban, G.A. & Kim, P.K. ROS-induced mitochondrial depolarization initiates PARK2/PARKIN-dependent mitochondrial degradation by autophagy. Autophagy 8, 1462–1476 (2012).

    CAS  PubMed  Google Scholar 

  23. Park, K.-S. et al. FCCP depolarizes plasma membrane potential by activating proton and Na+ currents in bovine aortic endothelial cells. Pflugers Arch. 443, 344–352 (2002).

    CAS  PubMed  Google Scholar 

  24. Maro, B., Marty, M.C. & Bornens, M. In vivo and in vitro effects of the mitochondrial uncoupler FCCP on microtubules. EMBO J. 1, 1347–1352 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Padman, B.S., Bach, M., Lucarelli, G., Prescott, M. & Ramm, G. The protonophore CCCP interferes with lysosomal degradation of autophagic cargo in yeast and mammalian cells. Autophagy 9, 1862–1875 (2013). An interesting study demonstrating the off-target effects of CCCP on lysosomal degradation processes, highlighting the need to develop new modulators of mitophagy.

    CAS  PubMed  Google Scholar 

  26. Alekseev, A.E., Gomez, L.A., Aleksandrova, L.A., Brady, P.A. & Terzic, A. Opening of cardiac sarcolemmal KATP channels by dinitrophenol separate from metabolic inhibition. J. Membr. Biol. 157, 203–214 (1997).

    CAS  PubMed  Google Scholar 

  27. Tsiper, M.V. et al. Differential mitochondrial toxicity screening and multi-parametric data analysis. PLoS One 7, e45226 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kenwood, B.M. et al. Identification of a novel mitochondrial uncoupler that does not depolarize the plasma membrane. Mol. Metab. 3, 114–123 (2013).

    PubMed  PubMed Central  Google Scholar 

  29. Ashrafi, G. & Schwarz, T.L. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 20, 31–42 (2013).

    CAS  PubMed  Google Scholar 

  30. Jangamreddy, J.R. et al. Salinomycin induces activation of autophagy, mitophagy and affects mitochondrial polarity: differences between primary and cancer cells. Biochim. Biophys. Acta. 1833, 2057–2069 (2013). A report showing the differential effects of salinomycin on mitophagy in normal and cancer cells

    CAS  PubMed  Google Scholar 

  31. Managò, A. et al. Early effects of the antineoplastic agent salinomycin on mitochondrial function. Cell Death Dis. 6, e1930 (2015).

    PubMed  PubMed Central  Google Scholar 

  32. Shen, Q. et al. Mutations in Fis1 disrupt orderly disposal of defective mitochondria. Mol. Biol. Cell 25, 145–159 (2014).

    PubMed  PubMed Central  Google Scholar 

  33. McLelland, G.L., Soubannier, V., Chen, C.X., McBride, H.M. & Fon, E.A. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 33, 282–295 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ivanes, F. et al. The compound BTB06584 is an IF1 -dependent selective inhibitor of the mitochondrial F1 Fo-ATPase. Br. J. Pharmacol. 171, 4193–4206 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim, E.H. & Choi, K.S. A critical role of superoxide anion in selenite-induced mitophagic cell death. Autophagy 4, 76–78 (2008).

    PubMed  Google Scholar 

  36. Kim, E.H. et al. Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells. Cancer Res. 67, 6314–6324 (2007).

    CAS  PubMed  Google Scholar 

  37. Liu, Y.Q. et al. Retigeric acid B-induced mitophagy by oxidative stress attenuates cell death against prostate cancer cells in vitro. Acta Pharmacol. Sin. 34, 1183–1191 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, J. et al. Mitochondrial outer-membrane E3 ligase MUL1 ubiquitinates ULK1 and regulates selenite-induced mitophagy. Autophagy 11, 1216–1229 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sentelle, R.D. et al. Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat. Chem. Biol. 8, 831–838 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dagda, R.K., Zhu, J., Kulich, S.M. & Chu, C.T. Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson's disease. Autophagy 4, 770–782 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chu, C.T. et al. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat. Cell Biol. 15, 1197–1205 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhu, J.H. et al. Impaired mitochondrial biogenesis contributes to depletion of functional mitochondria in chronic MPP+ toxicity: dual roles for ERK1/2. Cell Death Dis. 3, e312 (2012).

    CAS  Google Scholar 

  43. Zhu, J.-H. et al. Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am. J. Pathol. 170, 75–86 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Grenier, K., McLelland, G.-L. & Fon, E.A. Parkin- and PINK1-dependent mitophagy in neurons: will the real pathway please stand up? Front. Neurol. 4, 100 (2013).

    PubMed  PubMed Central  Google Scholar 

  45. Youle, R.J. & Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12, 9–14 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hertz, N. T. et al. A neo-substrate that amplifies catalytic activity of Parkinson's-disease-related kinase PINK1. Cell 154, 737–747 (2013). This is the first example of a pharmacological approach to enhance PINK1 activity and promote mitophagy under conditions of mitochondrial stress.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, C. et al. Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. Proc. Natl. Acad. Sci. USA 108, 16259–16264 (2011).

    CAS  PubMed  Google Scholar 

  48. Viotti, J. et al. Glioma tumor grade correlates with parkin depletion in mutant p53-linked tumors and results from loss of function of p53 transcriptional activity. Oncogene 33, 1764–1775 (2014).

    CAS  PubMed  Google Scholar 

  49. da Costa, C.A. et al. Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson's disease. Nat. Cell Biol. 11, 1370–1375 (2009).

    PubMed  PubMed Central  Google Scholar 

  50. Hoshino, A. et al. Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat. Commun. 4, 2308 (2013).

    PubMed  Google Scholar 

  51. Hoshino, A. et al. Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic b-cell function in diabetes. Proc. Natl. Acad. Sci. USA 111, 3116–3121 (2014).

    CAS  PubMed  Google Scholar 

  52. Chung, K.K.K. et al. S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function. Science 304, 1328–1331 (2004).

    CAS  PubMed  Google Scholar 

  53. Mogi, M., Kondo, T., Mizuno, Y. & Nagatsu, T. p53 protein, interferon-γ, and NF-kappaB levels are elevated in the parkinsonian brain. Neurosci. Lett. 414, 94–97 (2007).

    CAS  PubMed  Google Scholar 

  54. Duan, W. et al. p53 inhibitors preserve dopamine neurons and motor function in experimental parkinsonism. Ann. Neurol. 52, 597–606 (2002).

    CAS  PubMed  Google Scholar 

  55. Hasson, S.A. et al. Chemogenomic profiling of endogenous PARK2 expression using a genome-edited coincidence reporter. ACS Chem. Biol. 10, 1188–1197 (2015). A report describing a novel cell-based assay for the identification of modulators of parkin expression.

    CAS  PubMed  Google Scholar 

  56. Gatliff, J. & Campanella, M. TSPO: kaleidoscopic 18-kDa amid biochemical pharmacology, control and targeting of mitochondria. Biochem. J. 473, 107–121 (2016).

    CAS  PubMed  Google Scholar 

  57. Rupprecht, R. et al. Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat. Rev. Drug Discov. 9, 971–988 (2010).

    CAS  PubMed  Google Scholar 

  58. Bingol, B. et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510, 370–375 (2014).

    CAS  PubMed  Google Scholar 

  59. Cunningham, C.N. et al. USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat. Cell Biol. 17, 160–169 (2015).

    CAS  PubMed  Google Scholar 

  60. Yue, W. et al. A small natural molecule promotes mitochondrial fusion through inhibition of the deubiquitinase USP30. Cell Res. 24, 482–496 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Durcan, T.M. & Fon, E.A. The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev. 29, 989–999 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Amerik, A.Y. & Hochstrasser, M. Mechanism and function of deubiquitinating enzymes. Biochim. Biophys. Acta 1695, 189–207 (2004).

    CAS  PubMed  Google Scholar 

  63. Allen, G.F.G., Toth, R., James, J. & Ganley, I.G. Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Rep. 14, 1127–1135 (2013). A report demonstrating that pharmacologically induced iron depletion activates mitophagy.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Park, S.J. et al. Mitochondrial fragmentation caused by phenanthroline promotes mitophagy. FEBS Lett. 586, 4303–4310 (2012).

    CAS  PubMed  Google Scholar 

  65. Sargsyan, A. et al. Rapid parallel measurements of macroautophagy and mitophagy in mammalian cells using a single fluorescent biosensor. Sci. Rep. 5, 12397 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kondapalli, C. et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol. 2, 120080 (2012).

    PubMed  PubMed Central  Google Scholar 

  67. Kirienko, N.V., Ausubel, F.M. & Ruvkun, G. Mitophagy confers resistance to siderophore-mediated killing by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 112, 1821–1826 (2015).

    CAS  PubMed  Google Scholar 

  68. Mauro-Lizcano, M. et al. New method to assess mitophagy flux by flow cytometry. Autophagy 11, 833–843 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Schiavi, A. et al. Iron-starvation-induced mitophagy mediates lifespan extension upon mitochondrial stress in C. elegans. Curr. Biol. 25, 1810–1822 (2015).

    CAS  PubMed  Google Scholar 

  70. Kang, H.T. & Hwang, E.S. Nicotinamide enhances mitochondria quality through autophagy activation in human cells. Aging Cell 8, 426–438 (2009).

    CAS  PubMed  Google Scholar 

  71. Jang, S.Y., Kang, H.T. & Hwang, E.S. Nicotinamide-induced mitophagy: event mediated by high NAD+/NADH ratio and SIRT1 protein activation. J. Biol. Chem. 287, 19304–19314 (2012). A report describing the role of nicotinamide as a mitophagy inducer.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Huang, R. et al. Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol. Cell 57, 456–466 (2015).

    CAS  PubMed  Google Scholar 

  73. Fang, E.F. et al. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD+/SIRT1 reduction. Cell 157, 882–896 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011–2015 (2004).

    CAS  PubMed  Google Scholar 

  75. Kume, S. et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J. Clin. Invest. 120, 1043–1055 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Arun, B., Akar, U., Gutierrez-Barrera, A.M., Hortobagyi, G.N. & Ozpolat, B. The PARP inhibitor AZD2281 (Olaparib) induces autophagy/mitophagy in BRCA1 and BRCA2 mutant breast cancer cells. Int. J. Oncol. 47, 262–268 (2015).

    CAS  PubMed  Google Scholar 

  77. Bai, P. et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13, 461–468 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Jia, H. et al. High doses of nicotinamide prevent oxidative mitochondrial dysfunction in a cellular model and improve motor deficit in a Drosophila model of Parkinson's disease. J. Neurosci. Res. 86, 2083–2090 (2008).

    CAS  PubMed  Google Scholar 

  79. Khan, N.A. et al. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Mol. Med. 6, 721–731 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lee, I.H. et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci. USA 105, 3374–3379 (2008).

    CAS  PubMed  Google Scholar 

  81. Gurd, B.J. et al. Nuclear SIRT1 activity, but not protein content, regulates mitochondrial biogenesis in rat and human skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R67–R75 (2011).

    CAS  PubMed  Google Scholar 

  82. Dinkova-Kostova, A.T. & Abramov, A.Y. The emerging role of Nrf2 in mitochondrial function. Free Radic. Biol. Med. 88 Pt B, 179–188 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Jain, A. et al. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J. Biol. Chem. 285, 22576–22591 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Jo, C. et al. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat. Commun. 5, 3496 (2014).

    PubMed  PubMed Central  Google Scholar 

  85. East, D. A. et al. PMI: a DYm independent pharmacological regulator of mitophagy. Chem. Biol. 21, 1585–1596 (2014). A report showing that PMI, a direct inhibitor of the Keap1–Nrf2 PPI, induces mitophagy in a p62-dependent manner.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Wells, G. Peptide and small molecule inhibitors of the Keap1-Nrf2 protein-protein interaction. Biochem. Soc. Trans. 43, 674–679 (2015).

    CAS  PubMed  Google Scholar 

  87. Holmström, K.M. et al. Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration. Biol. Open 2, 761–770 (2013).

    PubMed  PubMed Central  Google Scholar 

  88. Bertrand, H.C. et al. Design, synthesis, and evaluation of triazole derivatives that induce Nrf2 dependent gene products and inhibit the Keap1-Nrf2 protein-protein Interaction. J. Med. Chem. 58, 7186–7194 (2015).

    CAS  PubMed  Google Scholar 

  89. Georgakopoulos, N. D., Gatliff, J. & Wells, G. Development of Keap1-interactive small molecules that regulate Nrf2 transcriptional activity. Curr. Opin. Toxicol. 1, 1–8 (2016).

    Google Scholar 

  90. Jo, C. et al. Sulforaphane induces autophagy through ERK activation in neuronal cells. FEBS Lett. 588, 3081–3088 (2014).

    CAS  PubMed  Google Scholar 

  91. Yang, Y.P. et al. Application and interpretation of current autophagy inhibitors and activators. Acta Pharmacol. Sin. 34, 625–635 (2013). Review article commenting on the mode of action and application of autophagy inhibitors.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kageyama, Y. et al. Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain. EMBO J. 33, 2798–2813 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Cassidy-Stone, A. et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev. Cell 14, 193–204 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Givvimani, S. et al. Mitochondrial division/mitophagy inhibitor (Mdivi) ameliorates pressure overload induced heart failure. PLoS One 7, e32388 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Qi, X., Qvit, N., Su, Y.-C. & Mochly-Rosen, D. A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity. J. Cell Sci. 126, 789–802 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Frank, M. et al. Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochim. Biophys. Acta. 1823, 2297–2310 (2012).

    CAS  PubMed  Google Scholar 

  97. Melser, S. et al. Rheb regulates mitophagy induced by mitochondrial energetic status. Cell Metab. 17, 719–730 (2013).

    CAS  PubMed  Google Scholar 

  98. Jin, S.M. & Youle, R.J. The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Autophagy 9, 1750–1757 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Yun, J. & Finkel, T. Mitohormesis. Cell Metab. 19, 757–766 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu, D. et al. The mitochondrial uncoupler DNP triggers brain cell mTOR signaling network reprogramming and CREB pathway up-regulation. J. Neurochem. 134, 677–692 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. East, D.A. & Campanella, M. Mitophagy and the therapeutic clearance of damaged mitochondria for neuroprotection. Int. J. Biochem. Cell Biol. 79, 382–387 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research activities led by M.C. are supported by the following funders, which are gratefully acknowledged: the Biotechnology and Biological Sciences Research Council (grant numbers BB/M010384/1 and BB/N007042/1); the Medical Research Council (grant number G1100809/2), Bloomsbury Colleges Consortium PhD Studentship Scheme; BBSRC iCase Studentship Scheme; The Petplan Charitable Trust; The Umberto Veronesi Foundation; Marie Curie Actions and LAM–Bighi Grant Initiative. G.W. acknowledges Cancer Research UK (C9344/A10268), the BBSRC (BB/L01923X/1) and UCL School of Pharmacy for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelangelo Campanella.

Ethics declarations

Competing interests

N.D.G. and G.W. are shareholders in Keregen Therapeutics Ltd, a small and medium-sized enterprise (SME) with a research interest in Nrf2 inducing compounds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgakopoulos, N., Wells, G. & Campanella, M. The pharmacological regulation of cellular mitophagy. Nat Chem Biol 13, 136–146 (2017). https://doi.org/10.1038/nchembio.2287

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2287

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing